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NOMENCLATURE

A = disturbance amplitude
b = bicoherence, Eqn. (4-1)
C = co-spectrum, Eqn. (2-3), integral path, Eqn. (5-5)
bed = cross bicoherence, Eqn. (4-2)
c, = convection velocity in streamwise direction
d = roughness diameter
E = expected value
e = ratio of major to minor axes of ellipse
f = frequency
(d1)
H = compressibility factor, 77(5,,) / .[0 T/ T,)dn, Ref. 37
h = enthalpy, J/kg, or ratio of computed laminar to measured heat transfer
ijk = computational indices for elliptic cone
J =+/-1
k = wavenumber
G = cross spectrum Eqn. (2-2)
L = model length, 1.016 m, or wall cooling factor in modified crossflow Reynolds number, Ref. 37
M = Mach number
N = number of time records averaged, or log of amplitude ratio (4/4)
n = unit normal to surface
r = pressure
[¢] = quad-spectrum, Eqn. (2-3)
q = heat flux, W/m’
R = film resistance, Ohms. Also, Reed and Haynes (Ref. 37) crossflow parameter,
Re ;(neuyUe ! Winax
Re = Reynolds number based on boundary layer edge conditions and running length along model
surface
Re v crossflow Reynolds number, W, 0, / V,, Ref. 37
Re of (new) = e crossflow Reynolds number, HL Re o Ref. 37
Re, = unit Reynolds number, m™
Re, = Reynolds number based on freestream (upstream of the model bow-shock) conditions and
model reference length, Re, L
Re, = Reynolds number based on freestream conditions and longitudinal distance along model axis,
Re, x
S = auto-power spectrum
St = Stanton number, ¢ / (p U, (K(T,) — K(T,)))
T = temperature or record length
t = time
U = axial velocity
W, = maximum crossflow velocity, m/s
X = complex Fourier coefficient
b = longitudinal distance from model apex to measuring station, measured along model centerline
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X = unwrapped surface coordinate on elliptic cone

¥y = on axisymmetric cone, distance away from model surface, measured perpendicular to model
surface. On elliptic cone, coordinate oriented along major axis of ellipse (Fig. 2-1)

vy’ = on axisymmetric cone, Y -distance from model surface to point equidistant between two
vertically separated probes. On elliptic cone, unwrapped surface coordinate.

z = on axisymmetric cone, distance along circular arc centered on model centerline. On elliptic

cone, coordinate oriented along minor axis of ellipse (Fig. 2-1)

= temperature coefficient of resistance, °C!, or elevation angle in spherical coordinate system,
deg.

= amplification rate, N / meter

= quadratic temperature coefficient of resistance, °C2, or azimuthal angle in spherical coordinate
system, deg.

= height above W, point where crossflow is 10% of w,

Q

max > M

=
N o

= coherence function

= boundary layer thickness

= computational radial coordinate perpendicular to model

= kinematic viscosity, m%/s

= wave velocity

= density, kg/m’

= structure angle (Fig. 3-8), elliptic cone angular coordinate (Fig. 2-1), or phase angle between
two hot film probes

= cone half angle

D DV TIINLR O TR

o

= probe separation in the x -direction (Fig. 3-5)

=

= probe separation in the y -direction (Fig. 3-5)

NGBV AY

= probe separation in the Z -direction (Fig. 3-5)

N

o = root mean square

T = time delay, seconds

[ = eigenfunction phase, or phase function of wave

a = angular frequency of wave

¥ = wave train function, Eqn (5-1)

"] = wave angle (normal to constant phase line) relative to edge velocity, deg.
Subscripts

e = boundary layer edge

g = group

max = evaluated at optimum time delay

L = based on model length, 1.016 m

N = Nyquist
j2 = phase

w = wall

o = stagnation condition, or for disturbance amplitude, at lower neutral branch
©0 = freestream conditions, upstream of model bow shock

Superscripts

*

= complex conjugate
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1. INTRODUCTION

Boundary Layer Stability and Transition

Boundary layer transition impacts hypersonic vehicle design through the significant increases in heat
transfer and skin friction that occur when the boundary layer transitions from laminar to turbulent
flow. Transition also impacts engine performance, aerodynamics, and drag. Currently, hypersonic
boundary layer transition cannot be accurately predicted due to its complexity. Uncertainty in
transition location leads to diminished vehicle performance, primarily because of the additional
weight of thermal protection needed to accommodate heating uncertainty. These factors provide
motivation for accurate transition prediction. Improved understanding of the physics of hypersonic
transition is certainly required to discern new phenomena and to challenge and validate computation
and prediction.

It has been recognized for many years that stability theory forms a foundation for the prediction of
transition and the interpretation of experimental results."”” Stability theory predicts the growth and
decay of periodic disturbances as a function of Reynolds number, over a range of frequencies and
wavenumbers. Both streamwise and azimuthal, (circumferential) wavenumbers are considered.
Disturbances with non-zero azimuthal wavenumbers are oblique waves, those with zero azimuthal
wavenumbers are two-dimensional. Limited experimental results® have verified basic predictions that
second mode instabilities, which are essentially acoustic waves, dominate hypersonic axisymmetric
boundary layer transition. First mode, or vortical disturbances (Tollmien-Schlichting waves) are also
present, but not dominant.

Early work in hypersonic boundary layer stability was largely limited to simplified configurations and
idealized disturbances. The goal of the current study was to move to a higher level of geometric complexity
by examining three-dimensional disturbances on three-dimensional bodies. The first phase of the process
involved examination of three-dimensional disturbances on axisymmetric bodies. The second phase
involved the study of three-dimensional disturbances on three-dimensional bodies. The following sections
provide background on these two phases.

Three-dimensional Disturbances on Axisymmetric Bodies

It is likely that a broad spectrum of wavenumbers and frequencies would be present in a flight
environment to excite the boundary layer. Even measurements in “low turbulence” or “quiet”
facilities which rely on the background spectrum of the wind tunnel to excite disturbances show a
continuous bands of unstable amplified frequencies and nonlinear harmonics.* > ¢ In addition to
atmospheric turbulence and inhomogeneities over a range of scales, a thrusting hypersonic vehicle
would experience vibration due to turbulent engine exhaust and a turbulent boundary layer over the
aft of the vehicle. Such a vibration would not only cause a time-dependent displacement of the body,
but would also cause a time-dependent distortion of the shock and create broadband vorticity and
acoustic waves.

Each transition prediction method differs in how multiple superimposed frequencies and wavenumbers are
handled. Methods include Linear Stability Theory (LST), Parabolized Stability Equations (PSE), and
Direct Navier Stokes Simulation (DNS).
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LST, by definition, treats each frequency and wavenumber independently. It cannot account for
disturbance amplitude, nonlinear wave interactions, or other nonlinear effects. Eigenvalues and
eigenfunctions for a spectrum of azimuthal and streamwise wavenumbers can be calculated, but not
their interaction. Despite these limitations, LST has been successful at correlating some hypersonic
transiti70n results® and describing unstable frequencies and wavenumbers in hypersonic boundary
layers.

PSE offers the possibility of taking disturbance amplitude and nonlinear wave interaction into
account. Herbert, et al.® and Malik et al.’ have identified nonlinear oblique wave interactions which
give rise to longitudinal vorticity as a possible breakdown mechanism in the hypersonic boundary
layer, based on PSE computations. The PSE method requires initial disturbance amplitudes and their
three-dimensional wave number spectrum. Full validation of the nonlinear interaction computations
also requires spatially distributed measurements to resolve 3D oblique wave interactions.

DNS computations, given sufficient computational resources, may be carried farther into the
breakdown regime than PSE. Pruett et al.!% used DNS to calculate the breakdown of a boundary layer
on an adiabatic wall cone with an edge Mach of 6.8. To alleviate the computational burden, PSE was
used to calculate the linear and initial nonlinear disturbance growth. The PSE results were then fed in
as initial conditions to the DNS. Pruett also showed oblique wave interactions as being important.
Although 2D waves are most unstable for the dominant second mode instability,' any given second
mode wave at this Mach number initially evolves at lower Reynolds number as first mode, for which
oblique waves are most unstable. Computationsg’ 10 indicate that oblique waves may play a significant
role in the transition process due to their initial first mode history.

In each of these computational approaches, broadband inputs with continuous spectra are modeled
with a finite number of wavenumbers. Numerical simulations of low-speed experiments where
broadband input has been simulated by impulsive point disturbances have shown that the resulting
wave packets may be represented in the small amplitude regime by a sum of linear modes.'"? This
approach requires judicious selection of the initial computational disturbance spectrum.

Very little experimental work on hypersonic boundary layer stability exists.>'>!* These experiments
have been single-point, hot wire measurements which have focused on obtaining spatial amplification
rates. Nonlinear wave interactions have been observed experimentally in single point
measurements,'” but the full 2D and 3D wavenumber content cannot be extracted from these data. In
order to more fully understand the stability and transition process, multiple point measurements which
reveal parameters describing the spatial structure of instability waves, such as wavelength, convection
velocity, and wave angle, are required.

Spatial correlation measurements in boundary layers of any type are rare. Some notable results
include those of Owen and Horstman'® at Mach 7.2, Demetriades'’ at Mach 9.4, and Spina18 at Mach
3, all in turbulent boundary layers. Owen and Horstman'® also measured space-time correlations
using hot wires in the transitional hypersonic boundary layer on an axisymmetric ogive-cylinder at a
freestream Mach number of 7.4. Their spectral data do not show evidence of second mode
instabilities preceding transition or occurring in the transition process. It is possible that the second
mode was present in their experiment, but that their instrumentation did not have high-enough
frequency response to resolve it.

To address these issues, the Phase I experiment measured space-time correlations in the M,=6.8

boundary layer of 7 deg., axisymmetric sharp cone. The goal was to document the transition process
from the regime of laminar flow, where linear instability waves are present, through the transition
process, to turbulent flow.

Disturbances in 3D Boundary Layers

Most realistic configurations include regions of three-dimensional flow. The stability and transition
characteristics of three-dimensional boundary layers differ significantly from those of two-
dimensional boundary layers. The most fundamental difference is that in addition to the instability
waves present in two-dimensional or axisymmetric flow, three-dimensional flows may contain
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crossflow instabilities. Crossflow instabilities are stationary (zero-frequency) or traveling co-rotating
vortices?® which are established when the boundary layer edge flow direction differs sufficiently from
the flow direction lower in the boundary layer. This crossflow is established by a spanwise or
circumferential pressure gradient which induces a flow component perpendicular to the longitudinal
axis of a body. Since the boundary layer fluid possesses lower momentum near the wall than at the
edge, the interior fluid is skewed more sharply than the exterior fluid. This shearing induces vorticity
with a streamwise component. Vortices which increase in strength in the streamwise direction may
arise. Under some conditions, these crossflow vortices may be the dominant disturbance leading to
transition. These vortices may also convect to produce non-zero-frequency disturbances.?"*>#
Computations® indicate that first and second mode disturbances may still be present in three-dimensional
hypersonic boundary layers, but that crossflow affects their amplification rates and the wave angles of the
most unstable disturbances.

Few stability computations for fully hypersonic, three-dimensional boundary layers exist.?
Essentially no experimental stability data exist for these flows. For this reason, it was decided that
the extensive experimental data base acquired by the Air Force’ on axisymmetric hypersonic
boundary layer stability should be extended to three-dimensional configurations. An elliptic cone
configuration was chosen as the candidate test geometry due to its resemblance to practical flight
configurations and the geometrical advantages it offers for probe measurements. The crossflow is
established by the pressure differential between the major and minor axes, which causes flow from the
high pressure major axis (leading edges) to the minor axis (top and bottom centerlines).

A large portion of the literature on three-dimensional hypersonic transition deals with axisymmetric
cones at angle of attack. Elliptic cone experiments of any type are relatively rare. Most elliptic cone
measurements have centered on pressure distributions or forces and moments. Experimental data on
heat transfer, the boundary layer, and transition are extremely limited. Heat transfer data were

obtained by Burke” on sharp- and blunt-nosed elliptic cones at M_ =10 and 14. The data for a

sharp-nosed elliptic cone of eccentricity e =1.43 at M_ =10, replotted in Fig. 1-1, show the

beginning of transition near the top centerline of the model. This behavior is qualitatively similar to
the transition of cones at angle of attack, where the most forward point of transition is usually on the
lee centerline.?”%2%303132 Other features analogous to cones at angle of attack are the increased heat
transfer on the leading edge, due to the higher stagnation line shear, and the lower heat transfer on the
top centerline, due to the boundary layer thickening caused by the influx of fluid at this location.

Crossflow instabilities in supersonic and hypersonic flow have generally been inferred experimentally
from the observation of streaks in surface visualizations. Arnal et al.,®® for example, observed such
streaks in temperature-sensitive paint on the surface of a swept cylinder at M_=10. The
wavelengths of these streaks agreed, within experimental scatter, with predictions of crossflow
wavelengths. Murakami, et al.**, also observed such streaks on a swept cylinder at M_ =5 using
temperature-sensitive liquid crystals. The boundary layer edge Mach numbers for these cases were
supersonic, however, rather than hypersonic, due to the model geometry. Oberkampf et al.”® observed
streaks on a cone at angle of attack at M =8 using shear-stress-sensitive liquid crystals. Numerous

investigators have observed surface streaking at supersonic and subsonic Mach numbers.

Numerous correlating parameters have been proposed to predict boundary layer transition.
Correlation methods are subject to much uncertainty, especially when a correlation developed for a
specific configuration is applied to a different configuration. Nevertheless, correlation methods
provide a rapid means of determining the likelihood of transition. The crossflow Reynolds number is

the most common parameter used to evaluate crossflow transition. Pate®® observed that 150 < Re, ;<

200 correlated transition data from a variety of sources and configurations for 0.3 <M _ < 7.4. Reed

and Haynes” observed a greater spread in crossflow transition Reynolds number for rotating cones
and cones at angle of attack, and proposed a modified crossflow Reynolds number to take
compressibility and wall cooling into account. Transition results from cones at angle of attack® at

M _ =3 and 6 were shown to be correlated by the new crossflow Reynolds number and the crossflow
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velocity percentage, 100w . /U,. These two parameters also correlated the N = 9 location on

max
rotating cones calculated by linear stability theory. These results indicated a “universal” parameter,
R. Reed and Haynes correlated R = 44.0 with transition under quiet conditions, and R = 33.7 with
transition in conventional facilities.

Lyttle and Reed®® performed PNS calculations for adiabatic wall elliptic cones with aspect ratios
(ratio of major to minor ellipse axes) of 2, 3, and 4 at M_ =4, and applied the crossflow Reynolds

number correlation to these results. The R-parameter for these configurations peaked near the top
centerline, outside of the region of validity of the above correlation. Boundary layer velocity profiles
near the top centerline were inflectional and unstable in nature.

Computational analysis was required to design the elliptic cone for several reasons. First, a geometry
had to be chosen which provided significant crossflow but which also possessed an extensive laminar
region for probing. Second, once a configuration was chosen, computations provided a rational basis
for locating instrumentation and survey stations. Third, to determine transition, calculated laminar
and turbulent baseline heat transfer was required to determine where the measured heat transfer first
departed from its laminar values. Finally, anomalies and uncertainties in the computation which came
to light during the test article design could be scrutinized experimentally.

The current investigation of elliptic cones consisted of three phases. In the first phase, Parabolized
Navier Stokes (PNS) computations were carried out for three elliptic cone configurations of aspect
ratio ¢ = 1.5, 2.0 and 4.0. Transition correlations were used to identify candidate configurations for
detailed linear stability analysis in the second phase. The candidate configuration, the 2:1 ellipse,
was selected for detailed heat transfer and hot film probe measurements.
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Figure 1-1. Stanton number contours for e = 1.43 cone at M_ = 10.
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2. EXPERIMENT

Test Facility

All tests were carried out in the Arnold Engineering Development Center von Karman Facility Tunnel B
(AEDC VKF-B). Tunnel B is a closed circuit hypersonic wind tunnel with a 1.27 m diameter test section.
Two axisymmetric contoured nozzles provide nominal Mach numbers of 6 and 8, and the tunnel may be
operated continuously over a range of stagnation pressure levels from 276 to 2070 kPa at Mach number 6
and 689 to 6200 kPa at Mach number 8. Stagnation temperatures sufficient to avoid air liquefaction in the
test section (up to 750° K) are obtained through the use of a natural-gas fired combustion heater. The entire
tunnel (throat, nozzle, test section, and diffuser) is cooled by integral, external water jackets. The tunnel is
equipped with a model injection system, which allows removal of the model from the test section while the
tunnel remains in operation. A description of the tunnel may be found in Reference 39.

Surveys of the flow field were made using a retractable overhead drive mechanism which makes it possible
to change survey probes while the tunnel remains in operation. The mechanism is housed in an air lock
immediately above the top of the Tunnel B test section. A remotely actuated shield was provided to protect
the probes when not in use. An auxiliary on-board probe drive mechanism mounted on the model support
sting was used to position a single probe in the model boundary layer at 0.895 m from the model apex. This
mechanism traversed in the direction normal to the model sting. No shield was provided for the probe
mounted on this auxiliary drive.

The Tunnel B freestream mean and fluctuating flow has been extensively monitored and calibrated.® The
mean Mach number on tunnel centerline is spatially uniform in the streamwise direction to within 1.2%.
Broadband root mean square (rms) freestream mass flux fluctuations on centerline are 1.2% to 1.5% of
local mean values, depending on tunnel unit Reynolds number. Broadband rms total temperature
fluctuations are an order of magnitude smaller than mass flux fluctuations. The freestream disturbance
spectrum maximum is between 2 and 3 kHz, and the power spectrum drops off above this as approximately

1/ f. The spectrum shape is similar for all unit Reynolds numbers for both mass flux and total

temperature. At Re, =1.64X 10° m, the rms mass flux fluctuations in the second mode frequency band

between 60 and 70 kHz are estimated to be 0.07%, based on the Reference 40 data. Modal diagrams*
indicate a freestream disturbance source in addition to acoustic radiation from the tunnel side-wall boundary
layers, perhaps total temperature non-uniformity due to uneven heating of the flow.

Axisymmetric Cone Test Article

The basic axisymmetric model for the investigation was a 7° half-angle cone of 1.016 m length and 0.250 m
base diameter, with interchangeable nose sections. A sharp nose was used which had a spherical radius of
0.04 mm. In order to minimize any flow interference due to the on-board probe drive mechanism, a frustum
was added to the basic cone model. This 7° frustum extended the model length to 1.283 m. and had a base
diameter of 0.315 m. The frustum had a narrow slot which accommodated the movement of the strut which
supported the probe mounted on the on-board drive mechanism.

The axisymmetric model was instrumented with 20 pressure orifices and four coaxial surface thermocouple
gages. The 0° ray of the model was the location of 18 pressure orifices. Two orifices were located on the
180 ° ray. The four coaxial thermocouple gages were located on the 90 ° ray. In addition, four
thermocouples were installed on the inside surface of the model along the 95 ° ray to monitor the
equilibration of the model shell temperature.




References 3, 15, and 41 describe detailed measurements of the boundary layer stability characteristics of
this model in Tunnel B at freestream Mach 8. The boundary layer is unstable to first and second mode
waves, with the second mode being dominant. Reference 3 shows that the second mode waves occur as
packets under these conditions. Computations detailing the eigenfunctions and most unstable wave angles
for these modes are given in References 7 and 8. PSE computations® indicate that the second mode
disturbance growth is linear to Reynolds numbers of 2.6x10°,

Elliptic Cone Test Article

The elliptic cone model consisted of a 0.1524 m long sharp nose and three frusta, two of which were 0.2794
m long, and one which was 0.3048 m long. The nominal nose radius was 0.04 mm in the major axis. The
entire model was 1.016 m long, with an elliptical cross section of aspect ratio 2.0:1. The model half angle
was 7 deg in the minor axis. The nose tip was solid, and the frusta were cast and machined to final contour
with a nominal wall thickness of 6.4 mm. All sections were constructed of 17-4 PH stainless steel and
finished to better than 0.8 um finish. The model geometry and coordinate system are sketched in Fig. 2-1.

One quadrant of the elliptic cone was devoted to pressure instrumentation, and one was devoted to heat
transfer. One entire side between the leading edges was devoid of pressure taps and heat transfer gauges
and was devoted to hot film probe measurements of the boundary layer. Heat transfer gauges and pressure
taps near the leading edge of the model were displaced toward the surface instrumentation side by two
degrees to keep the model leading edges clean.

Pressure taps consisted of 1 mm ID stainless steel tubing. Four pressure taps at x / L = 0.925 were located
on the major and minor diameters. Diametrically opposed pressure taps at this location were connected to a
single transducer to read a differential pressure between the two taps. Incidence angle was adjusted to zero,
+/- 0.1 ° by nulling out the pressure differential between these taps.

The heat transfer gauges were 4.8 mm diameter Schmidt-Boelter gauges. The Schmidt-Boelter gauge
consists of an aluminum wafer wrapped with constantan wire and and half-plated with copper to establish a
thermopile of 35-40 thermocouple junctions front and back. A constant heat flux to the front surface
generates a constant temperature difference across the wafer, which is measured by the thermopile. The
instrumentation locations are shown in Fig. 2-2.

Mean-Flow Survey Probes

Mean flowfield measurements were obtained on the axisymmetric cone only. For mean-flow measurements
of the boundary layer, a Pitot probe with a cylindrical tip and an unshielded total temperature probe were
used. The Pitot probe outside diameter was 0.4 mm and the inside diameter was 0.2 mm. The tip was
telescoped in a succession of larger diameter tubes for installation in the probe rake. The tube section
containing the probe orifice was bent to align the probe parallel to the model surface. The total temperature
probe was fabricated from a length of sheathed thermocouple wire (0.5 mm OD) with two 0.1 mm diameter
wires. The wires were bared for a length of approximately 0.4 mm and a thermocouple junction of
approximately 0.1 mm diameter was made.

Anemometer Instrumentation

The correlation measurements on both models were carried out using custom-built hot film probes
and constant-current anemometers. The film anemometer probe designs followed the guidelines
established in Reference 42. The probes consisted of a four inch long, 2.7 mm diameter twin-bore
alumina tube, sharpened at the front end and bearing twin 24-gauge (0.5 mm diameter) platinum
leadwires in the bores. Two hot film probe designs were used. In one of the designs, designated 70-
series probes, the sharpened end terminated in a short length of 0.5 mm diameter quartz rod held
parallel to the probe body. The film sensor was deposited at the tip of this quartz rod. In the other
design used, designated 90-series, the platinum leadwires were stepped down to a diameter of 0.1
mm, and their ends were cemented with potter's glaze on the sharpened alumina tip. The sensor film
was then applied between the tips of the two leadwires. In both designs the platinum sensor film was
first painted on the quartz or glaze substrate using a liquid platinum resinate solution, and then fired
at high temperatures to remove the liquid vehicle.




Typical film thicknesses were about 0.03 pm. The films were about 0.5 mm long (in the direction
parallel to the test surface and normal to the flow vector) and about 0.2 mm wide (in the direction
normal to the test surface). Electrical resistance of such films typically ranged from 10 to 20 ohms.
For several months prior to their use in the experiment the probes and their spares were subjected to
periodic resistivity calibration in a controlled oven, to monitor their condition and measure their
electrical properties. The coefficients o and B of these probes in the resistance-temperature relation

R=Rg(l +aT + BT2) were found to average 2.5x10-3 0C-1 and about -5x10°7 °C-2, respectively.

The probes have been found capable of enduring continuous exposure to temperatures of 870 OF and
dynamic pressures of order 140 kPa.

Flow fluctuation measurements were made using constant-current anemometry techniques. Three channels
of constant-current anemometer electronics were used. One channel was based on the Philco-Ford
ADP12/13 anemometer used in the earlier studies of boundary-layer stability at AEDC. Two channels were
based on the VKF-91 pair of anemometers built by AEDC/VKF in 1991. In each channel the anemometer
current control which supplies the heating current to the sensor is capable of maintaining the current at any
one of 15 preset levels. The anemometer amplifier which amplifies the sensor response signal contains the
circuits required to electronically compensate the signal for a 6-dB per octave roll-off which is
characteristic of a hot-wire sensor. Unlike the frequency response of hot wire anemometers, which
theoretically depends only on the wire time constant, the response of film probes depends on two
parameters: the film inherent time constant in the absence of the substrate, and the so-called loss
factor which combines film, flow, and substrate characteristics*?>. While the inherent time constant for
the probes used in this test were estimated in the range 10-20 psec, the loss factors were higher than
100. Under such circumstances one can easily show® that the thermal-lag attenuation of the probes is

3 dB/octave, and the phase lag is 45°, over most of the frequency range of interest. Therefore no
differential phase lag was expected between two probes at different points in the flow in this
experiment. On the other hand some quantitative distortions of the flow fluctuation spectrum were
expected, since the compensating amplifiers had a 6 dB / octave gain. However, these distortions
were uniform for all probes, and thus have little effect on the measurement of correlation coefficients.

The sensor heating current and mean voltage were fed to auto-ranging digital voltmeters for a visual display
of these parameters and to a Bell and Howell model VR3700B magnetic tape machine for recording. The
sensor response AC voltage was fed to an oscilloscope for visual display of the raw signal and to a wave
analyzer for visual display of the spectra of the fluctuating signal and was recorded on magnetic tape for
subsequent analysis. More details of the anemometer instrumentation are given elsewhere.*

Data were band-pass filtered between 10 Hz and 500 kHz and recorded using the analog FM tape recorder.
Initial signal analysis for the axisymmetric cone was performed using an HP3562-A digital signal
analyzer. The HP3562-A samples at 256 kHz, and the FM tape was played back at 1/8th speed for
analysis, giving an effective sample rate of 2.048 MHz. Data were low-pass filtered below 1.024
MHz to prevent aliasing. The HP3562-A performed software fast Fourier transforms on the data,
which provided the basis for the power and cross spectra. The data were later digitized from the FM
tapes using a CAMAC data acquisition system from Kinetic Systems, Inc., and stored on a Pentium
PC for analysis. The two or three channels of data were digitized simultaneously at an effective
sampling rate of 1.0 MHz in records of 22! = 2097152 contiguous samples per channel. For
convenience, the tape was typically replayed at half-speed and sampled at 500 kHz. The software for
controlling the CAMAC crate and analyzing the data was written in-house in the C++ and FORTRAN
77 programming languages.

Most of the data analysis algorithms were adapted from the book by Bendat and Piersol®®. The power
spectral density S at frequency f is the magnitude of the Fourier spectra at that frequency, averaged
over the total number of records, N, thus

s(r)= %T-glxmlz @)




The cross spectrum G(f) of signals from two probes, designated 1 and 2, is obtained by multiplying
the complex conjugate of the Fourier coefficient of signal 1 by the Fourier coefficient of signal 2, and
averaging over N records, thus

G(f) =W1T‘§X1i*(f)Xzi(f) 2-2)

The cross spectrum, being complex, contains the phase information needed to extract time delays
between the two signals as a function of frequency, and the amplitude information describing the
frequency-by-frequency correlation between them, or the coherence. The cross spectrum may be
written in complex form as

G(f) = C(f) - jof) =|G(f)e ™" @-3)

where the phase angle §(f), is given by the inverse tangent of the ratio of the quad- to co-spectrum

¢(f)=tan”[O(f)/ C(f)] ] @-4)

The coherence function, YV, is simply the cross spectrum normalized by the product of the power
spectra of the two signals at a given frequency,
2
5,(£)8,(f)

The above statistical quantities were averaged over N=120 records of 2048 points each for streamwise
and circumferential probe spacings, and N=60 records of 2048 points each for vertical separations.
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Test Procedure: Axisymmetric Cone

The experiment was conducted at a freestream Mach number of 7.93. The stagnation temperature was
720 K, and the cone wall condition was adiabatic. Tests were carried out at freestream unit Reynolds

numbers Re,,, = 1.64x106, 3.28x105, 3.94x106, 4.92x10, and 6.56x106 per meter by varying
tunnel stagnation pressure. Measurements were carried out at a nominal x-location 0.895 m aft of the
model tip, producing local x-Reynolds numbers, Re, of 2.0x106, 4.lx106, 4.9x106, 6.1x106, and

8.1x106 based on the local boundary layer edge unit Reynolds number and x-running length along the
model surface.

One hot-film probe was mounted in the on-board drive at a fixed location x=0.895 m aft of the model
tip. A rake containing up to four additional hot film probes was mounted on the tunnel overhead
drive (see sketch in Fig. 2-3). The axis of the overhead drive was swept back 7 deg. so that all
surveys with the drive were normal to the model surface. Measurements in the circumferential (or z)
direction, were carried out by positioning the probes at the maximum energy location in the boundary
layer, holding the rake fixed, and rolling the model to drive the on-board probe away from the rake.
The maximum energy location is defined here as the y-location in the boundary layer at which the
broadband rms signal from the hot film probe is a maximum. Measurements were taken at increments
of 3.18 mm circumferential separation, up to 63.5 mm between the on-board probe and the rake probe
nearest it. Streamwise correlations were obtained by holding the on-board probe fixed with a
circumferential separation of 6.36 mm from the nearest rake probe, and moving the rake downstream
in increments of 3.18 mm, up to 25.4 mm downstream of the on-board probe. The on-board probe
was held fixed at the maximum energy location, and the downstream probe was relocated at the
maximum energy point at each downstream station.

The boundary layer basic state was documented with surveys of mean Pitot pressure and total
temperature. During these surveys, two additional hot film probes were mounted on the rake along
with the Pitot and total temperature probes. These additional hot film probes were separated in the




vertical (y) direction by 1.47 mm. Vertical correlations through the boundary layer were thus
obtained during the mean flow surveys.

Test Procedure: Elliptic Cone

Heat transfer measurements were made by injecting the model into the tunnel airflow, recording the
Schmidt-Boelter output, and retracting the model. The model was cooled between runs to room
temperature, approximately 300 K. The tunnel nominal freestream Mach number was 7.93, and the
stagnation temperature was 720K, producing a wall-to-stagnation temperature ratio of 0.42. The tunnel unit
Reynolds number was changed by changing stagnation pressure. Length Reynolds numbers of
Re, =1.7x10%, 2.0x10%, 2.7x10%, 3.3x10%, 4.0x10%, 5.0x10%, 6.0x10°, and 6.7x10° were tested.

Several heat transfer runs were made at Re, =1.7x10° using roughness strips in an attempt to fix

stationary crossflow vortices. Strips containing spherical roughness elements of 2 mm and 1.3 mm diameter
spaced four diameters on center were placed in an arc around the model between zero and 90 degrees in the
heat transfer quadrant, at x /L = 0.225. An additional run was made with a strip 0.165 m in length with 1.3
mm diameter roughness, placed near the leading edge of the model at 6 = 86 ° and centered at x / L = 0.45.
This location for leading edge roughness was selected by tracing computed surface streamlines forward
from the instrumentation locations at x / L = 0.65 to the leading edge. Because the roughness strips covered
large regions of the model, the boundary layer thickness varied along the roughness strips. For strips placed
at x /L = 0.225, the roughness heights d / § at 6 = 45 ° were 0.40 and 0.62 for the 1.3 and 2.0 mm diameter
roughness, respectively, based on computed boundary layer thickness. For the strip placed at 0 =86 °,d/ 8
was 0.77 at the center of the strip.

Schlieren photographs were taken at Re;, = 1.7x10° with the model heated to recovery temperature and
rolled to various locations. A limited number of shadowgraphs were obtained with the model at room
temperature and rolled 90 °. Oil-flow visualization was also obtained at Re; = 1.7x10°. The oil mixture

consisted of silicone pigment suspended in a silicon oil. The model was covered with machinist’s blueing
to enhance contrast with the oil mixture, and several runs were taken with the oil painted on in a variety of
configurations. Each run lasted several minutes, during which numerous photographs were taken as the oil
streamed. Model temperature for these runs was between room and recovery temperature.

Hot film probe measurements were made on the elliptic cone using the overhead drive mechanism. For the
elliptic cone, the drive axis was swept 10.4 °. from vertical (the average of the major and minor axis half
angles), so that it traversed in a direction approximately normal to the model surface. The probe system on
the overhead drive consisted of a probe foot with three hot film probes with a lateral spacing of 3.18 mm.
Two probes (designated LAT and US) were positioned at the same x-location to measure lateral time delay.
One probe (designated DS) was positioned 3.18 mm downstream to measure streamwise time delay.

Measurements at different circumferential locations were made by rolling the model, rolling the probe foot
to orient the probe tips tangent to the model surface, and traversing the boundary layer to the maximum
energy location. The majority of measurements were made at x / L= 0.8 at roll angles between the top
centerline (6 = 0 °) and the leading edge (8 = 90 °). The data were taken under adiabatic wall conditions at
a freestream unit Reynolds number of 1.97x10° per meter for a local Reynolds number Re, = 1.6x10°.

Data Uncertainty

The quantities derived from the hot film measurements of greatest interest in this study are the
coherence and phase angle. Of these two, the phase angle is more prone to error. Some possible
sources of significant phase error include differential phase lag in the anemometer and recording
electronics, probe-to-probe differences in phase response, and phase differences incurred from
inaccuracy in probe spatial positioning. Pre-test calibration of the anemometers revealed that below
200 kHz, channel-to-channel phase differences were less than 2°. Since the thermal loss factors of the
probes were relatively high, the probes could be expected to show a constant phase shift over the
frequency band of interest, thus eliminating probe-to-probe differences as a significant error source.
Error in the probe relative x- and y - spatial locations produces phase error due to the components of

convection velocity in these directions. Assuming that disturbances convect at near the edge velocity
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(which is demonstrated in the Section 3), phase error due to X-positioning error is approximately
3X 10™ degrees per mm of misalignment per Hz. An estimated 0.1mm uncertainty in the relative Xx-
location of two probes thus leads to an uncertainty of 6° in phase angle at 200 kHz. The error is
proportionally less at lower frequencies. The error due to vertical displacement of the probes was
estimated by measuring phase angle as one probe was held fixed at the maximum energy location,
while the other probe was displaced relative to the other by +/- 0.1 mm and +/- 0.25 mm in the y-

direction, with a constant cfz separation of 9.5 mm. This  -sensitivity arises from the eigenstructure
of the second mode, i.e., the inclination of constant phase lines in the x — y plane. Results obtained

for the second mode at a Reynolds number of 4.1 X 106 show a sensitivity of 43° per mm of y
displacement. An estimated uncertainty of 0.03 mm in f y thus produces an uncertainty of 1.3° in the

second mode phase at the maximum energy location in the boundary layer. This should be a worst
case, since the change in phase with ) is maximized at the second mode frequency and at the

maximum energy location.** The summation of these errors leads to a worst case error of 9.3°.

The cross-spectrum and the phase angle are subject to random errors due to the finite sample size
used to estimate them. The cross-spectrum and phase angle errors depend on the number of samples
used to estimate them and the coherence of the two signals. Bendat and Piersol*’ give formulas for
the standard deviation of cross spectrum and phase for normally distributed signals. The normalized
rms error in the magnitude of the cross-spectrum (the rms error in the magnitude divided by the

magnitude) is equal to 1/ ( |}’|\/N ) The rms error in the phase angle, in radians, is given as

12
(1 - }’2) / (I}’I\/ 2N ) . Although the signals obtained in this study are not normally distributed,

these estimates may be used to demonstrate the trend in rms phase error with coherence. For
N =120 records and ¥ 2 = 0.9, the rms phase error is 1.2°. For the same number of records and ¥ 2
= (.2, the rms phase error increases to 7.4°.

Finally, it must be remarked that no decomposition of the fluctuations into mass flux or total
temperature was attempted in this measurement. According to linear stability theory the configuration
of the disturbances is the same from one mode to the other. For example, the phase velocity and
amplification rate should be the same for both density and total temperature fluctuations. The probe
outputs were also linear combinations of these modes. For these reasons the correlations of the probe
outputs should closely resemble the correlations of the flow fluctuation modes themselves. Hot wire
anemometry measurements of this same flowfield® in which the disturbances were separated into their
mass flux and total temperature components showed identical amplification rates for both components

The primary sources of inaccuracy in the transition measurements are the accuracy of the heat transfer
gauges and the uncertainty in the location of maxima and minima in heat transfer due to gauge spacing.
Donaldson and Hatcher ascribe an accuracy of +/- 5% to the gauges. Measurements show good run-to-run
precision, with variations of less than 1%. The in-situ accuracy of the Schmidt-Boelter gauges was assessed
previously® by comparing predicted to measured laminar heat transfer on a cone. Most of the gauges fell
within +/- 5% of theoretical, although a few fell outside of this band. A more conservative estimate of
transducer accuracy would be +/-10 %. Gauge spacing over most of the model was 0.05L in the axial
direction and 10 deg or less in the circumferential direction.

2-6




Figure 2-1. One quadrant of elliptic cone and coordinate system.
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Figure 2-2. Elliptic cone static pressure taps and heat transfer gauge locations. Vertical scale exaggerated
for clarity.
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Figure 2-3. Probe drive system for correlation measurements.
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3. CIRCULAR CONE MEAN FLOW AND CROSS CORRELATIONS

Mean-Flow and Power Spectra

Mean boundary layer surveys are presented in Fig. 3-1. The boundary layer profiles are laminar at Re =

2.0% 106, 4.1X 106, and possibly at 4.9X 106. Profiles at Re = 6.1X 10% and 8.1X 106 are clearly
transitional. Previous hot wire studies*' show that transition for this configuration, as defined by the x-
location where the second mode amplitude reaches a maximum before decaying, begins at X = 0.895 m at
Re= 4.1x106 , approximately. Heat transfer measurements reported in Ref. 48 show that the end of

transition at x=0.895 m, as defined by the peak in heat transfer, should occur at approximately Re =
8.1x 106 .

Power spectra are presented in Fig. 3-2. The second mode is clearly apparent at each Reynolds number up to

8.1X106. The power spectra amplitudes are normalized by the broadband mean square of the signal.
Previous work has shown that the peak second mode frequency scales on the boundary layer thickness and

edge velocity*’ and is equal to approximately U, / 26 . This scaling occurs because the most amplified
second mode wavelengths tend to be approximately twice the boundary layer thickness, and the second mode
phase velocities tend to be approximately equal to the edge velocity.” These ratios vary little with Reynolds
number and frequency. Thus, when the power spectrum frequency is scaled by U, /5 , the second mode

occurs at a nearly constant normalized frequency f 6/U, of 0.5. Because of this property, the U, / 0

scaling is used here rather than the non-dimensional frequency 27 / U, Re,, that is typically used in

stability theory. A nonlinear harmonic'® of the second mode occurs at a normalized frequency of
approximately 1.0.

Measurements of amplification rates by Stetson, et al.,*! on this configuration show that the second mode
amplifies as Reynolds number increases until transition occurs, and that the transition is clearly second-mode
dominated. The raw anemometer signal at the second mode frequency does increase with Reynolds number,
but the contribution of the second mode to the overall signal rms decreases with Reynolds number, so that the
normalized second mode amplitude decreases with increasing Reynolds number. The spectra of Fig. 3-2 are in
general agreement with spectra measured under similar conditions on the same model in the same wind tunnel,
as reported in Refs. 3and 41, but have not been corrected for the probe frequency response. Therefore, Fig. 3-
2 provides a qualitative guide to the spectral content of the signals, but cannot be considered quantitative.




Circumferential Probe Separation

The coherence as a function of frequency at minimum Z -separation is presented in Fig. 3-3. The minimum
circumferential separation f , is a constant 3.18 mm at each Reynolds number, but the normalized separation

fz / O varies due to the change in boundary layer thickness. The peak in the coherence at the second mode

frequency and harmonic is evident at each Reynolds number up to 8.1 X 106, At the lower Reynolds numbers,
there is a notable coherence in the 0.1 to 0.2 range of normalized frequency, which is in the first mode range.”
Above Reynolds numbers of 2.0 X 106 there is little coherence at frequencies higher than the second mode
except for the harmonic, indicating that disturbances at these frequencies have a predominant circumferential
scale less than 3.18 mm.

In Fig. 3-4 the coherence function at the peak second mode frequency is plotted as a function of
circumferential separation. The peak second mode frequency is defined here as the frequency at which the
coherence is a maximum at £, = 3.18 mm. Data at Re = 8.1x100 are not plotted because there is no clearly
definable second mode at this Reynolds number. Fig. 3-4 indicates that the circumferential scale of the second
mode wave packets, which tends to be 40 or less, based on a coherence level of 20%, decreases with
Reynolds number. The second mode peak coherence at minimum spacing also decreases as Reynolds number
increases, indicating that the circumferential scale of the second mode wave packets decreases as the Reynolds
number increases. Experiments in subsonic boundary layers have shown that the circumferential scale of wave
packets grows as Reynolds number increases.* Since there is no evidence of breakdown at a Reynolds number

of 4.1% 105, the decrease in circumferential scale may be due to a decrease in the scale of the freestream
input disturbances. Since breakdown has begun at a Reynolds number of 4.9 X 10%, as evidenced by previous
studies,*! the decrease in coherence at this Reynolds number may be due to some combination of breakdown
and a decrease in input disturbance scale.

Streamwise Probe Separation

The convection velocity is the primary data of interest to be extracted from the cross-spectrum for streamwise
probe separation. The probes were separated in the circumferential as well as the streamwise direction to
avoid interference between the upstream and downstream probes. Since the cross-spectrum with
circumferential separation showed that the waves are on average two dimensional, negligible error should be
incurred due to the circumferential separation. The circumferential separation does create a problem at higher
Reynolds numbers due to the drop in coherence with circumferential spacing. As noted in the discussion of
statistical errors in the Experiment section, the uncertainty in cross-spectral quantities increases as the
coherence decreases. Results for Reynolds numbers of 6.1 X 10° and 8.1 X 10° are not presented due to the
low coherence and noisy phase results. Due to the rapid drop-off in coherence in the Z-direction for the
higher Reynolds numbers, meaningful convection velocities could not be extracted even using the broadband
cross correlation. In order to obtain convection velocities at these Reynolds numbers, the probes would have
to be spaced closer together in the z -direction.

The convection velocity was extracted using the phase angle at the maximum streamwise separation of f L=

25.4 mm for Reynolds numbers of 2.0 and 4.1 X 10%. Using the maximum separation is desirable because the
relatively large phase angle at this separation provides a good signal-to-noise ratio. Because of the overall

low coherence at a Reynolds number of 4.9 X 106, the convection velocity is extracted using the minimum X -
separation, where coherence is highest. The streamwise convection velocity is defined as ¢, = -fx / 7(f).
The time delay as a function of frequency is obtainable from the phase, since 7 will be @/360th's of a period,
or T=@(f)/360f, when ¢ is expressed in degrees. Convection velocities are presented in Fig. 3-5. At
Reynolds numbers of 2.0x10°® and 4.1 X 106 the normalized convection velocity ¢, / U, at the second mode

frequency is between 0.95 and 1.0, in agreement with Mack's results for this configuration.” The data scatter
increases with Reynolds number and away from the second mode frequency due to lower coherence. Data are

not presented where the coherence is less than 0.05. At a Reynolds number of 2.0 X 105, the normalized
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convection velocity increases as frequency decreases, up to a level of about 1.1. The measured convection
velocity of 0.984 U, at the second mode frequency f =0.434U, / 0 at Reynolds number 2.0X 109

indicates a wavelength of 2.3 &, which is in agreement with Mack’s computations.’

Vertical Probe Separation

At a Reynolds number of 2.0 X 106, coherence measurements with vertical spacing of 1.47 mm (0.201 0)
between probes (Fig. 3-6) show a maximum coherence above 0.6 in the second mode range near the edge of
the boundary layer. In principle, a second mode wave should be coherent throughout the boundary layer.

Away from the boundary layer edge, however, the coherence for 5 y = 0.2010 spacing is less than 0.2 due to
the extremely low second-mode signal levels. The low coherence in the second mode range above the
boundary layer edge indicates that any forcing input from the tunnel wall boundary layer noise is dwarfed by
the second mode. ‘

The maximum coherence (Fig. 3-6) within the boundary layer for probes separated vertically by 1.47 mm at a
Reynolds number of 8.1 X 106, well into breakdown, is lower than the maximum coherence at Re =
2.0X 109, indicating that the vertical scale of disturbances has decreased due to the boundary layer

breakdown. However, the coherence in the interior of the boundary layer and above the boundary layer edge
is higher, indicating that this scale of disturbance is more uniformly distributed over the boundary layer.

Power spectra taken at Re = 8.1 X 106 (Fig. 3-2) show that disturbance energy is distributed across a broader
range of frequencies due to the boundary layer breakdown. Coherence measurements near the maximum
energy point in the boundary layer (Fig. 3-7) show that at a Reynolds number of 2.0 X 106, coherence on this

scale is limited to the second mode and lower frequencies. At a Reynolds number of 8.1X 106, the peak
coherence is lower, but the high-frequency coherence increases, reflecting a coherent high frequency
component of the flow.

Phase information for vertically separated probes is typically presented as a “structure angle,” @, for
turbulent boundary layers. The structure angle is determined by the time delay between the top and bottom

probes as @ = tan™ (f y / ¢, 7 ), where 7 is obtained from the cross-spectrum phase angle between the top
and bottom probe. Structure angles must be interpreted differently for second mode waves than for organized

turbulent structures, since second mode waves are periodic in the streamwise direction. Structure angles for
second mode waves represent the inclination of a line of constant phase in the X — y plane. Examination of

this angle gives some indication of how the eigenstructure of the second mode wave evolves into turbulent
structures. Structure angles for all of the Reynolds numbers tested are shown in Fig. 3-8. Data are not

presented where the coherence is less than 0.05. The angles for Reynolds numbers between 2.0 X 106 and
6.1% 109, inclusive, are for the peak second mode frequency. The angles for Re = 8.1X 106 were obtained
from the cross spectrum at f 5/ U, = 0.5. Broadband results at this Reynolds number (not shown) are
similar in shape, but about 8 ° higher. The convection velocity, ¢,, was taken equal to 0.95 U,. This is
appropriate for the lower Reynolds numbers, but is probably an overestimate for Re =8.1%106. Refs. 16-19

indicate normalized convection velocities between 0.8 and 1.0 for compressible turbulent and transitional
boundary layers. A convection velocity of 0.8 would increase the measured wave angle by approximately 8 °
The structure angles at Re = 8.1X 106 show a relatively constant angle across the boundary layer of
approximately 25° to 30°. This is in general agreement with the results of Owen and Horstmann'®"? for low
frequency disturbances in a hypersonic turbulent boundary layer for y / § £0.6. The present data, however,
do not show the structure angle increasing with y, as Owen and Horstman'®'® do, a trend which was also
observed by Spina et al.!® in a Mach 3 turbulent boundary layer. Structure angles are also generally less than
observed by Spina et al. ¥ These results indicate that the boundary layer has not relaxed to a fully turbulent
structure at this Reynolds number.
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The second mode waves show a much different structure. Their structure angle within the boundary layer is
generally less than the structure angle at Re =8.1X 106. This structure angle decreases with y to a minimum
of approximately 15° at y / 0 =0.7. Above the boundary layer edge, the inclination angle is higher at these
Reynolds numbers compared to Re =8.1X 106. This second mode structure retains its identity through a

Reynolds number of 6.1 X 106, although the change in structure angle begins to become evident at this
Reynolds number. The structure angle changes abruptly as the boundary layer breaks down between

Re =6.1% 106 and 8.1 X 106.




1
Re x10® 5 (mm) U, (m/s)
—a— 2.0 7.32 1146 g
10 —a— 4.1 6.07 1151 X -
—5— 4.9 5.77 1152 :
—— 6.1 4.70 1154
—— 8.1 7.77 1146
y/?d
0-5 - -
0.0 1 1
0.0 0.5 1.0
U/ Uy,
Figure 3-1. Mean boundary layer profiles.
3.0E-5 I

bt
=)
m
o

1.0E-5

AUTO-POWER SPECTRUM, S / ¢2

0.0e0 E22=20 AL

FREQUENCY, f6/ U,

Figure 3-2. Power spectra at maximum energy location.

3-5




COHERENCE, ¥(f,2)

COHERENCE, y(1, &, )

1.0

'z
2.0 0.434
_____ 4.1 0.523
— 49 0.550
0.677
1.0
FREQUENCY, fd/ U,
Figure 3-3. Coherence function at minimum z-separation.
1.0 T T | T T
0.8 = L
Rex10° f38/U,
—a— 2.0 gzgg
06 | ——8-- 4.1 : -
=\ g 0.466
T &3 oass
G
\
A}
04 -
‘\
A8 A
PR SN
02 -
\
R
A
A
YA..
0.0

0 2 4 o 6 ' 8 | 10
CIRCUMFERENTIAL SEPARATION, &,/ §

Figure 3-4. Peak second mode coherence vs. circumferential separation.

12




Re = 2.0x10°

12¢ =&
%A
il N £ 15=3.474,5,15=1.303
1 5
09}
0.8
2 12, Re = 4.1x10°
~
> 1} . £ 15=4.189, £, /8= 1571
- -3 A
§ 1F »* %AA% ﬁ“& -
] 25, & R
A K] I
m a
< osl®
o
12r Re = 4.9x10°
11r 2, £ 15=0.550,£,/5=1.101
1} .
oo} .
A
083703 03 04 035 06 07 038 095 1

FREQUENCY, f5/U,

Figure 3-5. Phase speed as a function of frequency: solid circles at Re = 4. 1x10° are computational results of

Mack.”

2.5 (— ‘ ,
201 t5/u, &1
0.434  0.201 1
i 0.502 0.189 1
15} .
yis | éy%% ]
10| i
0.5 -
0.0 N T TP SR T

0.0 0.2 0.4 0.6 0.8 1.0

COHERENCE, ¥(f, &)

Figure 3-6. Coherence for vertical probe separation through boundary layer.

3-7




COHERENCE, ¥(f, £,)

Figure 3-7. Coherence for vertical probe separation vs. frequency near maximum energy location in boundary layer.
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4. CIRCULAR CONE ENSEMBLE-AVERAGED STRUCTURE

Circumferential Probe Separation

Broadband space-time cross correlation coefficients for circumferential probe separation data at x-Reynolds
numbers of 2.0x10°%, 4.1x10°% and 4.9x10° are shown in Fig. 4-1. The circumferential separation, &,, is
normalized by the boundary layer thickness, and the time delay T is normalized by 60 / U. Since the
disturbances convect at near the edge velocity, the T axis approximates a streamwise separation normalized by
8. The disturbances are periodic in time (or streamwise direction), with a wavelength of approximately two
boundary layer thicknesses, which is the second mode wavelength. This is expected, since spectra show the
second mode to be dominant. The correlation is modulated in time and space, with a maximum at zero time
delay, and drops off with increasing 7, approaching 0 at +/- 4 1 U/ 3, reflecting the limited streamwise
coherence of the signal and its packet structure.

Although Fig. 4-1 resembles wave packets observed by Gaster,'** one must recall important differences

between Fig. 4-1 and Gaster’s results. Gaster presented contours of velocity fluctuations which were obtained
by placing a hot wire at various x,z locations downstream of the disturbance source and ensemble averaging
the signal. The Fig. 4-1 results were obtained by cross correlating two circumferentially separated probes.
The second mode packets are presumed to be generated upstream, with some random distribution in time and
space due to the stochastic nature of the freestream input disturbances. Fig. 4-1 thus presents a region in time
and space over which second mode disturbances are coherent, and does not necessarily represent a disturbance
amplitude le\;el. The circumferential scale over which the signal is coherent is approximately 7.58 or less for
Re £4.1x10°.

Since the peak occurs at zero time delay for all circumferential separation, the second mode waves are, on
average, two-dimensional, without any preferred obliquity. Since the cross correlation was reconstructed from
the ensemble averaged cross spectrum, this is not unexpected. A random distribution of positively and
negatively skewed waves would tend to cancel out during the ensemble averaging process. The instantaneous
wave angle is addressed in the next section.

There is no evidence of a circumferential periodicity developing as Reynolds number increases, as might be
expected from a subharmonic. Some variation in the optimum time delay with g, is evident in the cross
correlation obtained at Re = 4.1x10%. The predominant variation with Reynolds number is in the amplitude
and circumferential scale of the correlation. Disturbances remain correlated out to a slightly larger &,
separation at Re = 2.0x10° compared to 4.1x10%. Between Re = 4.1x10° and 4.9x10° there is a drastic rolloff
in the circumferential correlation, although there is still a distinct streamwise periodicity at the second mode
wavelength. Previous measurements*! correlated Re = 4.1x10° with transition on this configuration. The drop
in correlation between these two Reynolds numbers indicates a rapid transition from the circumferentially
organized second mode waves to structures with a much smaller circumferential scale. The transition front
observed on shadowgraphs is observed to fluctuate upstream and downstream to some degree. The observed
cross correlation is probably the result of second mode wave packets alternated with turbulent, or quasi-
turbulent flow which is circumferentially coherent only on a lesser scale.

A wavenumber spectrum derived from the circumferential correlations at 68 kHz (near the second mode peak
at Re = 2.0x10°) is shown in Fig. 4-2. The filtered cross correlation for f = 68 kHz at zero time delay was
Fourier transformed with respect to circumferential separation to obtain the wavenumber spectrum. The data
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are normalized so that the area beneath the curve is one. The Nyquist, or maximum resolvable, wavenumber
ky, is equal to one-half the spatial sampling frequency in analogy with the temporal Nyquist frequency.
Spatial anti-alias filtering is not possible with this configuration, but the roll-off in the wavenumber spectrum
at higher wavenumber indicates that a significant portion of the higher wavenumber content was captured.
The Nyquist wavenumber is 2.3 times the second mode streamwise wavenumber, and corresponds to an
azimuthal wavenumber of 108. The lowest azimuthal wavenumber resolvable is 13.5. Note that if the
circumferential extent of the wave packet is limited, there is no requirement that the azimuthal wavenumber be
an integer. The circumferential wavenumber spectrum peaks at low wavenumber, but some energy content is
distributed over higher wavenumbers.

Correlations were obtained in the freestream (upstream of the model bow shock) with the same probe
configuration used for circumferential correlations in the boundary layer. The low signal level in the second
mode frequency band in the freestream makes interpretation difficult. Donaldson and Coulter* showed that
the shape of the freestream spectra was similar at different Reynolds numbers, but the maximum resolvable
frequency increased with increasing unit Reynolds numbers. Their measurements at Re, = 9.8x10°® per meter
show 0.07% mass flux and 0.013% total temperature fluctuations between 60 and 70 kHz, which is the second
mode frequency band at Re,~ 2.0x10° per meter. This Reynolds number is a worst case. Since the freestream
spectrum decreases with increasing frequency, the percentage freestream fluctuation in the second mode band
drops as tunnel unit Reynolds number increases, due to the increasing second mode frequency. Freestream
cross spectra were obtained at Re,= 3.9x10°® per meter in the current experiment. The coherence obtained
from the cross spectrum in Fig. 4-3 show the signal to be uncorrelated above 50-75 kHz at minimum z-
separation in the freestream. The phase shows a large rms variation due to the low coherence level, but
appears to be distributed about zero.

Vertical Probe Separation

The phase angle obtained by traversing two probes with a fixed vertical separation through the boundary layer
was compared to linear stability calculations. The phase angle obtained from linear stability theory is the
phase of the instability wave relative to the phase at some reference location. The phase angle obtained from
the measured cross spectrum in this experiment is really the difference in disturbance phase between the two
y-locations. Therefore, a second order Runge-Kutta integration of the measured phase angle was carried out
before it was compared to computation. Phase was referenced to zero at the first measurement point. A
second consideration is that the phase depends on the quantity considered. The hot film anemometer voltage
is a combination of its response to total temperature and mass flux fluctuations. Therefore, it is necessary to
consider the computed phase of both total temperature and mass flux fluctuations.

The vertical probe separation was fixed at 1.47mm. Since the boundary layer thickness varied with tunnel unit
Reynolds number, the probe separation in terms of § varied from 0.189 3 to 0.314 8. The effect of this
vertical separation on the measured phase was assessed by simulating the measurement with the computed
phase. The difference in the computed phase at the experimental y-locations was integrated using the same
Runge-Kutta procedure used on the experimental data. The results in Fig. 4-4 show that the probe separation
does indeed smear out the phase angle, but this smearing amounts to at most a 30 ° error.

Experimental phase is compared to computed phase in Fig. 4-4. The experimental results agree with
computed phase for total temperature fluctuations. The relative sensitivity of the hot film to total temperature
and mass flux fluctuations depends on the hot film overheat ratio. At low overheats, the film is more sensitive
to total temperature than mass flux fluctuations. The overheat ratio for the data shown in Fig. 4-4 was 13%
(the film resistance was 13% higher than its resistance at recovery temperature). The Fig. 4-4 results are thus
consistent with the relatively low overheats used in this experiment, and indicate that the probes were
responding primarily to total temperature fluctuations. These results show that even with the relatively large
probe separation used in this experiment, this technique is useful for mapping disturbance eigenfunctions.

Broadband correlations derived from measurements made with probes separated vertically and traversed
through the boundary layer are shown in Fig. 4-5. Since these measurements were made with a fixed probe
separation, the reconstruction of the correlation contours requires some additional effort, similar to that
described by Spina et al.'® The survey point nearest the wall is taken as a reference. This correlation gives an
optimum time delay for a fixed probe separation at this point in the boundary layer, Tnax(y;). Given Tmax(V1)




and the distance between this point and the next survey point, Ay = y, - y;, the correlation at y, is indexed in
time by (Ay / &,) Tmax(y1). Since the zero of the time delay axis is arbitrary in this scheme, the contours for
convenience have been time-shifted to place the maximum positive correlation near the boundary layer edge at
zero time delay.

The correlation should, in the context of linear stability theory, be unity across the boundary layer at the
optimum time delay for each vertical point. Due to the presence of background disturbances and the
extremely low signal level away from the edge of the boundary layer, the correlations at the lower Reynolds
numbers drop off above and below the maximum energy location. The correlation contours thus reflect, to a
certain extent, the signal-to-noise ratio. As the Reynolds number increases, the maximum correlation extends
farther into the boundary layer. This indicates that the disturbance level in the interior of the boundary layer
is increasing as the boundary layer progresses to turbulence.

The second mode waves at the lowest Reynolds number are periodic, with a streamwise wavelength of
approximately two boundary layer thicknesses. The correlation persists several second mode wavelengths
away from the zero reference. The waves tend to have a flattened or elongated structure. This agrees
qualitatively with shadowgraphs of “rope” waves shown in Fig. 4-6 for the same configuration. Since the rope
waves appear near boundary layer breakdown and have approximately the same wavelength as the second
mode, they are most likely the second mode in a late, nonlinear stage of development. One must be careful
not to make too literal a comparison between the shadowgraphs, which are images of the second derivative of
density, and correlations of total temperature. Nevertheless, both show highly inclined wavefronts, i.e., large
phase changes across the boundary layer. As the Reynolds number increases and the boundary layer begins to
transition, the streamwise coherence length decreases and the disturbances begin to stand more erect (i.e.,
their phase shift in the y-direction decreases). At the highest Reynolds number, the angle between the
correlation contours and the wall have increased further, reminiscent of typical “turbulent structures” seen in
boundary layers.'®'®!® Also, the dominant disturbances have shifted to a shorter wavelength, reflecting the
spread of energy from the second mode to higher wavenumbers.

Bicoherence Analysis

Cross-bicoherence analysis between streamwise separated probes was carried out. Bicoherence on single
channel measurements was also carried out. The bicoherence, defined as

B x()x G+ 1)
Elxx L) Elx G+ £

is a measure of nonlinear phase locking among frequency components in a single signal.”’ The cross
bicoherence between signals x and y,

bz(flaf2)= (4-1)

(¥ + 1% DX )]
Elxcrx ) E[vn + 4]

quantifies nonlinear phase locking among frequency components between two signals.s2 The bicoherence and
cross-bicoherence vary from zero to one, where one indicates total quadratic coupling.

(4-2)

Cz(.fnfz):

The cross-bicoherence was near zero at all Reynolds numbers in this experiment. Two factors probably
account for this. First, at the lower Reynolds numbers, there was little nonlinear coupling. Second, the
streamwise separated probes were also separated in the circumferential dimension by 6.35 mm to avoid
interference. At higher Reynolds numbers, the circumferential correlations between probes dropped so rapidly
that even at the minimum separation there was very little correlation.

The bicoherence measured at Re = 4.1x10°%, shown in Fig. 4-7, is essentially identical to the bicoherence
measured using hot wire, rather than hot film, probes, and measured on the same model during a different test
entry.'” This emphasizes the repeatibility of this nonlinear interaction, which has been observed in other
boundary layers subjected to broadband input. Higher harmonics were observed in hypersonic transition in
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quiet facilities*’ and in subsonic flow with broadband acoustic input and roughness strips for acoustic
receptivity.6 The bicoherence measured at Re = 4.9x10%, shown in Fig. 4-8, shows a broader range of
nonlinear interactions. Nonlinear interaction of the subharmonic with itself and other frequencies is apparent
in the bispectrum, although the subharmonic is not pronounced in the power spectrum.>'® The fundamental
second mode also shows nonlinear interaction distributed across the spectrum. At both of these Reynolds
numbers, the maximum bicoherence was approximately 0.4. This value is less than the maximum of one due
to electronic noise and flow fluctuations."’
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Figure 4-6. Shadowgraph of rope waves. Flow is from left to right.
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5. CIRCULAR CONE TIME RESOLVED STRUCTURE

Wave packets in boundary layer stability

Since the hot film signal appeared packet-like in nature, this aspect of the signal was examined in more
detail. Wave packets appear to be a universal feature of ‘natural’ transition in a relatively low-disturbance
environment. For a low-speed, flat-plate boundary layer flow, for example, the oscillograms presented in
the famous experiments of Schubauer and Skramstadt™ show a low-level signal alternating intermittently
with high-amplitude ‘bursts.” At hypersonic Mach numbers, Potter and Whitfield* observed packets of
‘rope waves’ in schlieren photographs of a hypersonic flow over a cone.

A number of researchers have examined a simplified wave packet problem, in which a short, localized pulse
is introduced into a laminar boundary layer flow.'"***>* The resulting wave packet is studied as it travels
downstream in the boundary layer. A short input pulse has a very broad and flat spectrum in frequency-
wavenumber space, so all unstable modes tend to be excited evenly. After the transient component dies out,
the wave packet takes on an asymptotic form that is independent of the initial conditions. In incompressible
boundary layers, this form appears as a corrugated, kidney-shaped patch. %’

A complication arises for wave packets in a hypersonic boundary layer. Linear stability theory identifies
two important unstable modes, the Tollmien-Schlichting mode and second (Mack) mode. Linear stability
theory also predicts that the most unstable first mode disturbance becomes increasingly skewed to the
freestream direction as the Mach number increases from zero to the supersonic range, but that the most
unstable second mode disturbance is oriented normal to the freestream. ‘

As a disturbance of constant frequency travels downstream through increasing values of the Reynolds
number, a skewed first mode component is initially most amplified, and later a two-dimensional second
mode component is most amplified.’’ This result suggests that the development of a wave packet in a
hypersonic boundary layer is significantly different from the analogous problem in incompressible flow, and
that the asymptotic form of the wave packet is a strong function of Mach number and the streamwise station
where the disturbance originates.

Further, the phenomenon of transition, in contrast to stability, depends on the total growth of boundary layer
disturbances. Point disturbances are introduced randomly all over the boundary layer, and transition is
caused by the flow that results from a sum over the histories of all the resulting wave packets."

Kinematic Approach

A kinematic approach to the study of boundary layer disturbances is of interest because of the complexity of
the dynamics of the transition process. Boundary layer transition data can be difficult to interpret in terms
of normal modes when the disturbances are in the form of wave packets or when they grow into the
nonlinear regime. Important kinematic features include the frequency of occurance of the packets, as well
as their length scale, lifetime, orientation, and velocity. Valuable data for transition modelling can be
obtained by tracking the changes in these features from the initial onset of instability, through the formation
of Emmons spots, to the development of the organized structures observed in fully developed turbulent
boundary layers.

A kinematic approach to describing wave motion was developed independently by Landau and Lifshitz™
and Whitham.”® This approach generalizes the idea of a traveling plane wave to a slowly-varying, quasi-
planar wave train. A wave train ¥ is assumed to have the form:




W(3,1) = A%, £) cos ¢(%, £) -1)

where A is the amplitude function and ¢ is the phase function.

The basic assumption is that, over space and time scales corresponding to one cycle of cosd, the amplitude
function A is approximately constant and the phase function ¢ is nearly linear (see Segel® for a more
precise statement of this restriction). In consequence, the extrema of the wave train (the crests and troughs)
coincide approximately with extrema of cos¢, so that lines of constant phase can be associated with
wavefronts.

The angular frequency is defined to be the rate of decrease of the phase function with time (@ = -00/0t),

while the wavenumber vector is defined as the gradient of the phase function (ié = V¢). Since the

amplitude A has been assumed to be a slowly-varying function, the quantity @2, which represents the
instantaneous rate at which cycles of cosd cross a given point, can be interpreted as the instantaneous rate
that waves cross that point. Similarly, k/2% can be interpreted as a local measure of the number of waves
per unit length along the direction normal to a wave front.

The speed of a crest or trough identified with a particular value of the phase can be determined by taking
the time derivative of the equation ¢(X,?) = const.:

49 _H & ys-0 (52)
dt ot dt

where ¥(f) describes the trajectory of a point on the iso-phase surface, and V = dx / dt is its velocity.

Using the definition of the unit normal to the surface (i = V¢ / |V ¢
normal component of the velocity:

), we get an expression fixing the

- -dg /ot _

V.i= =wlk (5-3)
V4

Thus, an observer moving at a velocity with a component normal to the iso-phase surface equal to @/ k sees
a constant phase. The component of the observer's velocity tangential to the iso-phase surface is arbitrary -
wave motion parallel to the wavefront cannot be detected. Thus we define the phase velocity as

Vv, = (@ / k)7 , which is the velocity of the iso-phase surface normal to itself.

If we add the time derivative of the wavenumber vector to the gradient of the angular frequency we can
derive an equation relating the two quantities.

—
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Under the assumption of nearly-planar waves, Equation (5-4) can be interpreted as an expression of wave
conservation. To see this result, we integrate Equation (5-4) between two points X, and X, over a path C,

and divide by 2x.

(5-5)

The term on the left-hand-side represents the time rate of change of the total number of cycles of cos¢ over
the path of integration. The terms on the right-hand-side represent the difference in rates at which cycles of

cosd cross the points 550 and 551 . Thus, under the nearly-planar wave assumption, the equation can be

interpreted as follows: the rate of change of the number of waves along C is equal to the rate at which waves
enter at 550 minus the rate at which waves leave at X,. In other words, quasi-planar waves retain their

identity as they travel.

If the group velocity is defined as i;g =dw/ 07; , and we take the scalar product of the group velocity with
Equation (5-4), we get:

da _do

+v -Vo=0 5-6
dt ot Ve -6)

implying that an observer moving with the group velocity sees a constant frequency. An analogous equation
for the wave number vector can be derived if @ = f(k), otherwise (e.g., @ = f(k, X)) the wavenumber
vector changes for an observer moving with the group velocity.

The quasi-planar wave assumption seems to be consistent with experimental observations of boundary layer
disturbances upstream of the breakdown to turbulence. Boundary layer properties typically vary slowly in
the direction of propagation of a disturbance, and experimental data seem to be consistent with a nearly
constant amplitude and approximately linear phase. Many flow visualization experiments show convincing
wave trains.'>*"$? Thus, the kinematic theory of wave motion is applicable to disturbances in transitional
boundary layers, and can be used to define a number of parameters describing experimental measurements
of wave packets. In particular, the frequency, wavenumber, phase velocity, group velocity, and wave
identity are well-defined in the context of the kinematic wave theory, without reference to the underlying
dynamics that cause the wave motion.

General Character of Signal

Sound radiation from the turbulent boundary layers on the tunnel side-walls is believed to be the primary
source of disturbances driving transition for experiments in conventional supersonic and hypersonic wind
tunnels.® For compressible flow, linear stability theory® predicts that boundary layer disturbances will be
amplified in two frequency ranges, corresponding to the first and second modes. Measurements in the
freestream of AEDC VKF-B® indicate that most of the energy content of the tunnel background noise is
concentrated in a frequency range much lower than the characteristic frequency of the second mode
instability (f= U,/28). In experimental data one would thus expect to see a second mode component arising
from this ‘quiet’ frequency range, a relatively lower frequency first mode component driven by the tunnel
background noise, and a modulation arising from the random nature of the tunnel noise.

Fig. 5-1 shows sample time-series plots at Reynolds numbers Re of 2.0x10% 4.1 x10°, 6.1 x10°, and
8.1x10°%. These data were obtained at the value of y 78 where the highest signal energy was detected. The




streamwise station was held constant at x = 896 mm, and the Reynolds number was varied by changing the
tunnel stagnation pressure.

The lowest Reynolds number case (Fig. 5-1a) shows the expected wave-packet character. There is a
dominant periodic component in the signal with a relatively low frequency modulation, and relatively
quiescent periods alternate with packets of high-amplitude fluctuations. At a somewhat higher Reynolds
number (Fig. 5-1b), the quiescent periods are less frequent and the packets more prominent. As the
Reynolds number is increased still further, the signals acquire a less regular character (Figs. 5-1c and 5-1d),
although some of the features of the initial instability are still detectable even at the highest Reynolds
number.

Plots of the corresponding power spectral densities (PSD) are shown in Fig. 5-2. The two lower Reynolds
number cases (Figs. 5-2a and 5-2b) are dominated by a strong peak at the characteristic second mode
frequency. Weak harmonics of this frequency are also evident in the plots, possibly indicating the initial
onset of non-linearity in the transition process. There is suprisingly little energy content in the frequency
range below the second mode. For higher values of the Reynolds number, the disturbance energy begins to
be distributed over a range of frequencies (Fig. 5-2c), and eventually the instability breaks down into
turbulence (Fig. 5-2d).

Figs. 5-3 and 5-4 show, respectively, time-series plots and probability density functions for four different
stations in the boundary layer at a Reynolds number of Re, = 4. 1x10%. For the lowest station shown (Fig. 5-
3a), the most striking features are high-amplitude, predominantly negative ‘spikes’ in the signal. The
probability density function (Fig. 5-4a) shows a corresponding negative skewness. Higher in the boundary
layer (Figs. 5-3b and 5-4b), the negative spikes become more frequent, and the negative skewness of the
PDF becomes quite striking.

Between y78 = 0.76 and y78= 0.78 there is a qualitative change in the behavior of the signal: the negative
tail on the PDF is balanced by a positive tail (Fig. 5-4c) and both positive and negative “spikes” are seen in
the time series plots (Fig. 5-3c). The highest intensity of fluctuations are detected in the vicinity of this
change in behavior. (The maximum signal energy occurs at y7d=0.78 + 0.02.) Still farther from the wall
(Figs. 5-3d and 5-4d), the PDF fills out, eventually forming a symmetric, Gaussian distribution.

In summary, the single-point time-series data are dominated by the second mode instability. The signals are
intermittent, consisting of a random modulation imposed on a periodic signal. Power spectra are dominated
by a peak at the characteristic frequency of the second mode, with surprisingly little energy at lower
frequency, where wind tunnel background noise would be expected to drive the first mode. A qualitative
change in the signal behavior was observed across the y74 station of maximum energy, presumably
corresponding to the critical layer.

Disturbance Wave Orientation

One interesting aspect of the disturbance structure is the orientation in a surface parallel to the wall (x-z)
represented by the skewness angle y . Over a range of supersonic and hypersonic Mach numbers, linear
stability theory predicts that the most unstable second mode disturbance is oriented normal to the freestream
(y = 0), and that the most unstable first mode disturbance is skewed to the freestream direction (45° Sy <
65° over 1 < M < 10). Wave skewness was investigated experimentally by acquiring data from probes with
a circumferential separation (&,).

Fig. 5-5 shows an example of the broad-band cross-correlation for a Reynolds number of Re = 4.1x10°,
The cross-correlation displays a periodic component with a time scale characteristic of the second mode
instability and a larger scale decay in time reflecting the limited streamwise coherence of the disturbance
wave packets in the flow. If skewed waves were present in the flow, a pair of extrema, symmetric about
zero time delay, would be expected in the cross- correlations. For a convection velocity of 0.9U, = 1.04
mm/|isec, a probe separation of &, = 12.7 mm, and a wave angle of ¢ = /4, there should be maxima at time
delays of T~ % 12 ps. Instead, the optimal correlation occurs at zero time delay for the present case as well
as for the other Reynolds numbers for which data is available (not shown).

The skewness of the different disturbance modes may not be apparent in the cross-correlation because it
contains no frequency-dependent information about the signals - the skewness may ‘wash out’ in the
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calculation. An alternate way of looking at the two signals is through the cross-spectrum. Plots of
coherence (e.g., Fig. 5-6) do show that the signals have frequency-dependent features: a low-frequency
component that may be related to the first mode and/or wind tunnel noise, the second mode, and the first
harmonic of the second mode.

If, over a range of frequencies, there were a constant time shift T between the two signals, we would expect
to see a linear segment with slope 27T in a plot of the phase versus frequency. Fig. 5-7 shows the phase of
the cross-spectrum for the Re = 4.1x10° case. Surprisingly, there is no time delay detectable in the data.

To examine the possibility that the instantaneous orientation of the boundary layer disturbances was
different from the ensemble-averaged orientation, the probability density function (PDF) of the phase of the
cross-spectrum was computed. The phase PDF was computed by dividing each pair of contiguous records
into windows of 2° = 64 points (the window size was selected to correspond approximately to the
characteristic time scale of the autocorrelation), computing the cross-spectrum and its phase for each pair of
windows, and incrementing a two dimensional array with indices corresponding to the phase and the
frequency. For the present circumferential probe separation, a bimodal distribution of the phase would be
expected if skewed waves were present in the flow.

Fig. 5-8 shows the PDF of the phase for a Reynolds number of Re = 2.0x10°, plotted with frequency as a
parameter. In this figure the horizontal axis corresponds to frequency in Hertz, the vertical axis corresponds
to the phase, which ranges from - to 7, and the contours correspond to the probability density. At the
higher frequencies, there is essentially a uniform distribution of phase, as would be expected for
uncorrelated noise. In the vicinity of the second mode frequency, however, there is a clear peak evident in
the distribution of phase, centered near zero. A second peak is apparent at lower frequency.

Fig. 5-9 shows the corresponding results for a Reynolds number of Re = 4.1x10%. Again, a uniform
distribution of phase is observed for relatively high frequency, and a distribution peaked near zero phase is
seen in the vicinity of the second mode frequency. The low-frequency peak apparent in the previous case is
also present here. The major difference between the two cases is that for the high Reynolds number case
the distribution is broader in the second mode frequency range and there is more separation in frequency
between the second mode and the low-frequency component of the data.

These results are consistent with two-dimensional waves traveling in the direction of the freestream: each
crest or trough of such a horizontal wave would intersect both hot-film probes simultaneously, creating no
phase difference in the two signals. There is no evidence of oblique waves in the data.

Summary

Two-dimensional, second-mode waves were detected in the Mach 8 flow over a 7° half-angle cone studied
in the present project. No evidence of the first mode was found. Little energy was detected in the lower
frequency range, and no evidence of wave skewness was apparent.

According to stability theory'®®® the amplification of a boundary layer disturbance is very history-dependent
in compressible flow. As a disturbance of constant frequency travels downstream in a compressible
boundary layer, it is first amplified in the region of first mode instability, and farther downstream is
amplified in the region of second mode instability. If disturbances originate at different streamwise stations
(Reynolds numbers), as would be expected in a wind tunnel with background noise, early first mode growth
might be averaged out by second mode amplification of disturbances originating farther downstream.

The problem with conventional transition experiments is that the origin - in space and time - of the
disturbances entering the boundary layer is not known, so that it is not possible to examine a disturbance at
a known stage in its amplification history. This question could be resolved by carrying out an experiment in
a hypersonic flow similar to the experiment of Gaster and Grant,” in which a localized, short-duration
disturbance was introduced into an incompressible boundary layer, and synchonized measurements were
made downstream.
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Figure 5-1. Time-series plots of the hot-film signal at the maximum energy station. (a) Rex =2.0 x105. (b)
Re, = 4.1 x10°%. (c) Re, = 6.1 x10°. (d) Re, = 8.1x10°.
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Figure 5-2. Power spectra at the maximum energy station. (a) Re, = 2.0 x10°. (b) Re, = 4.1 x10°%. (c) Rex =
6.1 x10°. (d) Re, = 8.1x10°.
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Figure 5-3. Time series plots for four stations across the boundary layer at Re, = 4.1 x10%. (a) y'/6 = 0.64.
(b) y'/86=0.76. (c) y'/86 =0.78. (d) y'/5 = 0.86.
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Figure 5-6: Coherence derived from the cross-spectrum for Re, = 4.1 x10%and £,/6 = 2.1.
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Figure 5-7: Phase of the cross-spectrum for Re, = 4.1 x10° and &,/6 = 2.1.
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Figure 5-8: PDF of the phase as a function of frequency for Re, = 2.0 x10° and &,/8 = 1.3. Contour interval
0.05.
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0.05.
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6. ELLIPTIC CONE COMPUTATION

Computational Procedure

Parabolized Navier-Stokes and linear stability computations were used to design the elliptic cone
model. Computations were carried out for e = 1.5, 2.0, and 4:1 cross-sections for the expected

nominal freestream conditions of Mach 7.95 and Re, = 3.3x10° per meter. After the wind tunnel

test, additional computations were carried out for the e = 2.0 configuration at the actual wind tunnel
conditions. These detailed computations are compared to experimental results in Section 7. Section
6 compares computational results for the three configurations.

Most of the laminar boundary layer basic state computations were carried out using the UPS
Parabolized Navier-Stokes code®, as modified by Lockheed-Martin Tactical Aircraft Systems. The
code uses a central difference scheme for inviscid fluxes and a fourth order smoothing model. All
results, with the exception of heat transfer, are for adiabatic wall conditions. The Mk code® was
used to calculate boundary layer stability.

The coordinate system is shown in Figure 6-1. The nose solution for the first 25.4 mm of each model
was obtained with the Navier-Stokes Nose Solution Code (NSC). Both CFD codes employed shock
fitting to model the outer boundary. The computational grid shown in Fig. 6-1 was generated by
distributing points along the circumference of the model at each axial cross-section (x constant), and
projecting the radial lines outward, normal to the body, in the yz-plane. The interior points were
spaced algebraically in two radial layers. The inner layer resolved the boundary layer, and the outer
resolved the remainder of the flowfield. Two spacings were employed in the inner layer. Near the
wall, the spacing was 100% of even spacing within the inner layer. Grid points were spaced more
closely at the edge of the boundary layer to resolve gradients there. Spacing at the boundary layer
edge was 66% of even spacing. For the outer layer, the spacing at the shock was 150% of even
spacing, and the spacing at the edge of the boundary layer was set to match the spacing of the
neighboring point. Each layer contained approximately half of the total radial points. The UPS code
automatically adapted the grid to keep the grid layer interface at the edge of the boundary layer.
Solutions were confined to one 90 degree quadrant of the cone.

Grid resolution studies were conducted on the e = 1.5 and 2.0 configurations. The ijk grid
dimensions were changed from 61x51x875 to 121x61x875. Only the fine grid results results are
presented for these configurations. Only a 61x71x875 case was run for the e = 4.0 configuration.
Results were insensitive to grid resolution except for the high-frequency amplification rates calculated
near the top centerline. At 50 kHz, for example, the amplification results were about 10% lower
when the boundary layer edge was more poorly resolved. Since this frequency range and region were
of little consequence to the overall results, no further grid refinement was undertaken in this portion
of the study. Detailed computations for the e = 2.0 configuration at the exact experimental
conditions, reported in the next section, used a 121x51x875 grid.

The effect of numerical smoothing on the basic state can be very important to a linear stability code.
Too much smoothing can change the boundary layer profile derivatives and lead to erroneous results.
For this study, only fourth order smoothing was present in the CFD solution. The smoothing constant
was halved for the e = 1.5 fine grid case to assess these effects. The only variations in the linear
stability results were in the region near the edge of the boundary layer build-up near the top




centerline. A finer grid would be desirable here to resolve the higher flowfield gradients in this
region.

Tests were conducted on the e = 1.5 configuration to determine the effects of linear stability
approximations on stability predictions. Results should be qualitatively similar for the other
configurations. Several parameters control the location of the outer boundary and the region the gMalik
internal grid is clustered to. Clustering of the eM¥% internal grid and the outer boundary location were
varied, but no significant effects were observed. In the final results, the outer boundary location was
set to 20 times the boundary layer height, and the clustering parameter was set to 80% of the
boundary layer height.

The version of the eM** code used did not include the coordinate system curvature terms. The axial
curvature of the coordinate system as it moves along a streamline should be small and of little
consequence since there is no destabilizing concave curvature. The transverse curvature should be
more like that seen on a conical body, however. Accordingly, the conical coordinate system
curvature terms were introduced into the code to get some idea of their effect. These showed
amplification reductions over many regions that averaged around 10%. This calculation is not
rigorously correct, but it does give some idea of the uncertainty in the results. A PSE code could
more easily include the curvature and non-local effects that the present linear stability analysis
ignores.

Basic State Results

The pressure distributions about the circumference of the three configurations are shown in Fig. 6-2.
The pressure gradients between the major and minor axes establish the crossflow, and the strength of
the crossflow depends on the magnitude of these gradients. The crossflow is defined relative to the
boundary layer edge velocity, with positive crossflow defined as inboard toward the model centerline.
The boundary layer edge velocity is not, in general, parallel to a ray emanating from the model nose.
At most locations the edge velocity possesses a component directed inboard due to the circumferential
pressure gradient, and a component directed toward the model surface since the conical bow shock
does not turn the streamlines completely parallel to the model surface. Thus a boundary layer edge
velocity direction must be defined for each radial grid line. The total enthalpy profile was used to
identify the boundary layer edge since it is unaffected by shock curvature and has been shown
previously to correlate well with the velocity thickness for circular cones*!. Since the Prandtl number
is less than unity, the total enthalpy profile varies from less than freestream at the wall to a maximum
3% to 4% above freestream within the boundary layer. The boundary layer edge is taken as the
location above the peak where the total enthalpy ratio is 1.005. At each circumferential station the
boundary layer edge was identified and the edge total velocity vector noted. The cross product of the
body normal with the edge velocity vector defined the crossflow direction for each radial grid line.

Contours of w,, /U, for the e = 2.0 configuration are shown in Fig. 6-3. The crossflow contour

shapes for the other two configurations were similar. The maximum boundary layer crossflows were
6.5%, 10%, and 14.5% for the e = 1.5, 2.0, and 4.0 configurations, respectively. The 10% maximum
crossflow ratio for the e = 2.0 configuration compares to a peak of about 4% for the e = 2.0
configuration® at M_ =4.0. The increased crossflow in the present study is due to the stronger

circumferential pressure gradient created by the higher Mach number.

The crossflow is illustrated by the surface (or limiting) and boundary layer edge streamlines for the e
=2.0 configuration shown in Fig. 6-4. The edge streamlines are directed approximately along rays
from the nose of the configuration, but the surface streamlines (computed from the first point off the
body surface) are sharply deflected toward the centerline. The surface streamlines run parallel to but
do not cross a locus near the centerline. This feature is typical of a crossflow separation, and was
observed by Lyttle and Reed™®.

To further investigate the existence of crossflow separation, sectional streamlines in the crossflow
plane are plotted in Fig. 6-5. These velocity vectors are described in a spherical coordinate system, in
which a zero length vector represents either zero velocity magnitude or flow directed entirely along a
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ray from the origin at the model nose. The vectors in Fig. 6-5 represent flow perpendicular to rays
from the origin. Although sectional streamlines may in some cases be misleading®, Fig. 6-5 provides
strong evidence of crossflow separation. Cross flow separation is indicated by the liftup of sectional
streamlines from the model surface near B = 1.2 deg. (coincident with the surface line of
convergence), and the spiral focus located near § = 0.8 deg and o = 7.2 deg. The vortex would be
difficult to identify experimentally due to its close proximity to the model body.

The crossflow separation or near-separation has implications for boundary layer stability. The
boundary layer thickness perpendicular to the model surface in Fig. 6-6 illustrates the ballooning of
the boundary layer near the model centerline. These results are typical of the other two
configurations. This ballooning is due to the influx of low momentum fluid from around the model
circumference, and increases with increasing crossflow. A thick, decelerating boundary layer would
be expected to be unstable, a conclusion which is born out by the velocity profiles in Fig. 6-7, and
stability results described below. Velocity profiles near the leading edge and the model “shoulder”
are full and typical of accelerated flows. The velocity profile at the model centerline is inflectional
and typical of a decelerated flow.

Heat transfer for the e = 2.0 cold wall case is shown in Fig 6-8. Heat transfer is highest on the
leading edge, due to the attachment line heating. The heat transfer decays exponentially with x, as
observed by Burke®® for the elliptic cone at Mach 10. The boundary layer build-up on the model
centerline is reflected in the low heat transfer at 6 = 0 degrees.

Transition Correlation Results

Transition correlations based on mean flow parameters are notoriously uncertain but often are the
only prediction tool available. Since the flow stability is related to factors such as Reynolds number
and Mach number, transition correlations provide at least a gross indicator of whether a flow is near
or far from transition. For these reasons, several transition criteria were examined for this study.

The conventional crossflow Reynolds number, Re., is plotted in Fig. 6-9 for the e = 2.0
configuration. A typical value for crossflow transition in incompressible boundary layers is Re, =
150. The conventional crossflow Reynolds number over the bulk of the e = 2.0 configuration is about
an order of magnitude larger than this. Reed and Haynes®’ suggest scaling the conventional crossflow
Reynolds number to take into account the increase in boundary layer thickness which occurs as Mach
increases. Their modified crossflow Reynolds number, Re gnew), is defined as HLRe.s. L is unity for

M(810)
an adiabatic wall, and H is defined as 7(d,,) / -[o (T T,)dn, where 1 is the computational

coordinate perpendicular to the model wall. Since 7/T, is unity or greater over an adiabatic wall
boundary layer, H is less than one, and as can be seen from Fig. 6-9, has the effect of scaling the
conventional crossflow Reynolds number back into a range typical of incompressible boundary layers
near transition.

Reed and Haynes®’ further suggest correlating compressible crossflow transition with the parameter R,
defined as R = Re (s, )U, / Wy, , and present data over a range of 0.02 < Wy, /U, < 0.08

indicating that transition occurs in conventional facilities at a value of R = 33.7. The loci of R = 33.7
locations for the three configurations are shown in Fig. 6-10. Although the R = 33.7 contours lie, for

the most part, outside the range of 0.02 < w_, /U . < 0.08 for which the correlation was developed,
they do indicate the presence of significant crossflow on each configuration. N-factor contours
(discussed below) of 4 and 5 are also shown on these plots. Contours of R = 33.7 do not correlate
with any particular N-factor.

Since velocity profiles on the model centerlines are inflectional and unstable, traveling-wave
dominated transition might occur here. In order to assess centerline transition, contours of the
correlating parameter Reg/ M, of 100 were plotted. In all cases, a value of Reg/ M, of 100 is attained
on centerline at less than 20% of the body length, indicating the instability of this region.




The Reg / M, = 100 contours are nearly coincident with contours of R = 33.7. It might have been
expected that their shapes would be similar. When the crossflow Reynolds number is multiplied by
U, Mmaxs Wmax cancels, leaving a Reynolds number based on 8,0 and edge values of U and v, so all
dependence on the crossflow velocity drops out.’” H is a boundary layer integral parameter like 6,
and 0, like H, can be expressed as an integral of temperature over the boundary layer through the
thermodynamic and Crocco-Busemann relations.”’ The 10% crossflow thickness, 8o, is equal to
about 90% of & over most of the elliptic cone. It remains to be seen, however, whether the contour
shapes are similar or even coincident on other configurations.

Stability Results

Zero-frequency linear stability analysis was conducted on all configurations, and multiple frequency
analysis was conducted for the e = 1.5 and 2.0 configurations. Zero-frequency wavelengths and wave
angles are illustrated in Fig. 6-11. The wave angles are inclined approximately 90 deg to the
boundary layer edge velocity vectors, i.e., the vortices are approximately aligned with the boundary
layer edge streamlines. The zero-frequency wavelengths tend to be between two and three boundary
layer thicknesses, and can thus be pictured as being somewhat flattened. The e =2.0 results are
typical of the other two configurations.

Since the N-factor method is a correlation method, transition prediction requires that a correlating N-
factor be chosen. Previous computations’ indicated that a correlating N-factor for second-mode-
dominated transition for a 7 deg half angle sharp cone in AEDC tunnel B is between four and five.
Experimental studies by King®' in the NASA Langley Mach 3.5 quiet tunnel indicated that the effect
of wind tunnel “noise” on putatively crossflow-dominated transition was much less than the effect of
noise on traveling-wave-dominated transition. This effect might be due to the fact that the wind
tunnel noise field consists primarily of convecting acoustic waves, and stationary crossflow vortices
have a phase velocity of zero. The stationary disturbances might be expected to be more sensitive to
zero-frequency disturbances, i.e. perturbations in the mean flow due to model roughness or wind
tunnel flow non-uniformity. These results imply that N-factors for zero-frequency disturbances in
AEDC tunnel B might be higher than four or five. Without further prior knowledge, an N-factor for
crossflow transition in this facility cannot be determined. Therefore, an N-factor of five was chosen
as a benchmark value indicating significant disturbance growth.

Fig. 6-10 shows N =5 contours for zero-frequency disturbances. Since the maximum N-factor on the
e =1.5 configuration is less than five, the N = 4 contour is shown instead. The N-factor contour
shapes correspond to the crossflow contours in Fig. 6-3, indicating that for these configurations,
percentage crossflow is a gross indicator of crossflow instability. The integrating effect of the N-
factor procedure causes the peak N-factor contours to be shifted inboard slightly relative to the
maximum crossflow contours

Since the top centerline of the model was expected to be unstable to traveling disturbances,
instabilities with frequencies of 20, 40, 60, 80, 100, 130, and 160 kHz were also calculated for the e
= 1.5 and 2.0 configurations. Figure 6-12 shows that a large portion of the e =2.0 cone (typical) is
unstable over a broad range of frequencies. This contrasts with the axisymmetric cone case,”*! which
shows a well-defined first and second-mode merged instability region with damped disturbances
outside of this range. The 3-D instability behavior is reminiscent of the results of Stetson>® on the
leeward centerline of a 7 deg. sharp cone at 2 deg. angle of attack, which exhibited broad-band
instability.

N-factors were calculated for each of the above frequencies, integrating along both the streamline and
group velocity directions. The differences between streamline and group velocity integration were
negligible. Contours of 40 and 60 kHz, which attained N-factors of five earliest, are shown in Fig. 6-
13. These contours show a double-lobed appearance, in contrast to the single-lobed contours for zero
frequence disturbances seen in Fig. 6-10. The outboard lobe is associated with the region of
maximum crossflow, and the inboard lobe is associated with the unstable profile near the model
centerline.
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The e = 4.0 configuration was eliminated as a test configuration since an N-factor of five for zero-
frequency disturbances occurred at about 30% of the body length, indicating possible early transition,
leaving little room for probing the boundary layer prior to transition. Also, the boundary layer build-
up on the model centerline was larger than the other two configurations, indicating a possible early
transition on the centerline which might contaminate the off-centerline transition process.

The e = 1.5 and 2.0 configurations were unstable to a broad band of traveling disturbances. These
configurations displayed traveling-wave N-factors of five early on the model centerline. In the
crossflow region, traveling-wave N-factors of five occurred at 40-50% of the model length. Given
that N-factors of stationary and traveling waves are roughly equivalent, the transition process is likely
to be mixed-mode, with contributions from both traveling and crossflow instabilities. It may be
necessary in the experiment to place roughness on the model surface in order to force standing wave
dominance. The e = 2.0 configuration was chosen for fabrication since it showed higher crossflow N-
factors than the e = 1.5 configuration.

The build-up and instability of the centerline boundary layer is a problem which must be dealt with in
any flight configuration which exhibits inboard-directed crossflow. It is possible that the body might
be contoured in some way to alleviate this build-up and stabilize the boundary layer. Future research
should also consider the blunt-nose elliptic cone configuration. This configuration offers a more
complex but more realistic flight geometry. Also, bluntness can stabilize second mode instabilities on
axisymmetric cones.® If traveling waves could be sufficiently stabilized, the crossflow instability
might be isolated.
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Figure 6-1. PNS computational mesh on e = 2.0 elliptic cone.
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Figure 6-2. Circumferential distribution of wall-to-freestream static pressure ratios.
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7. ELLIPTIC CONE MEASUREMENTS

Measured surface pressures are compared to computed pressures in Fig. 7-1. Computations were carried
out at Re, = 3.3x10%. Measurements were obtained at Re, = 6.7x10° for optimum transducer

resolution. Measured pressures agree with computation to within approximately 5%. Leading edge and
centerline measured pressures are somewhat lower than computed, probably due to the reduced viscous
interaction at the higher Reynolds number. Viscous interaction, as evidenced by the length it takes for
pressure to relax to a constant value along a ray, is more pronounced on the model centerline than the
leading edge due to the thick centerline boundary layer.

Schlieren photographs taken with the model at 0 deg roll (minor axis up, Fig. 7-2) show boundary layer
breakdown beginning at x /L = 0.5. A portion of the model from approximately x /L = 0.1 tox/L =
0.5 is visible in this window. At the top of the model on the right, structures resembling rope waves with

wavelengths approximately 2-38 are visible preceding breakdown. Schlieren images taken at Re, =

6.7x10° (not shown) showed distinct rope waves in the leading edge boundary layer. Traveling waves are
thus evident on both major and minor axes.

In both the top and bottom boundary layer, unusual structures consisting of elongated streaks, inclined
approximately 5 deg to the model surface, are visible. These structures appear in every schlieren
photograph at this roll angle, and at other roll angles up to about 26.1 deg. They are perhaps cores of
crossflow vortices, projections of highly skewed rope waves, skewed compression waves produced by the
local increase in displacement thickness near the centerline, or some other phenomenon. Their inclination
is greater than the centerline Mach wave inclination, and they appear on both the clean (top) and
instrumented (bottom) sides of the model, so their source is not surface instrumentation roughness. Because
the boundary layer balloons up locally on the centerline, two boundary layer edges project above the model
silhouette when the model is inclined at a small roll angle. One edge is due to the centerline boundary
layer, and the other is due to the thinner boundary layer off of centerline. Judging from its thickness, the
boundary layer edge visible in Fig. 7-2 is the centerline boundary layer. The dark streaks observed on the
schlieren do not appear to be the edge of the peripheral boundary layer, since this runs approximately
parallel to the model centerline, rather than at an angle to it, like the streaks in the photograph do.

An example of surface oil streak flow visualization is shown in Fig. 7-3. The model was rolled 90 deg
(major axis up), and was photographed through a side window. Oil was applied at four locations on the
model leading edge at the top and allowed to drip from top to bottom, forming four starting lines
approximately perpendicular to the airflow. Two indications of transition appear in the oil flow. First (best
observed in the set of streaks nearest the model trailing edge), oil near the centerline has been dragged
farther downstream than oil near the leading edge, indicating higher shear due to turbulent flow in this
region. Second, oil streaks in this region appear to be aligned roughly with rays emanating from the model
apex. This is contrasted with (for example), the second set of streaks downstream of the model apex, which
show large angles near the centerline and are more similar to the computed laminar surface streamlines
(shown in the previous section). Higher wall shear within the turbulent boundary layer causes reduced
crossflow, and would be expected to produce streaks more closely aligned with the edge streamlines, as is
observed here. Also, the linear stability calculations for this model showed that crossflow vortices should
also be approximately parallel to edge streamlines. However, based on the heat transfer data (shown later),
the region with oil streaks parallel to edge streamlines lies beneath turbulent flow. It seems unlikely that
crossflow vortices would survive intact this far into the turbulent region. Also, the streak spacing is less
than the expected crossflow wavelength.
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Crossflow separation is not evident in the oil flow within the turbulent region. However, within the region
of laminar flow, two long streaks of oil appear near centerline in the streak pattern second from the nose tip.
Any crossflow separation would be expected to be very close to centerline, and the resolution of the oil
streaks here precludes the visualization of any well-defined coalescence lines. However, the parallel lines
of oil accumulation in this region may well signify crossflow or incipient crossflow separation.

Fig. 7-4 shows heat transfer from the leading edge at the highest and lowest Reynolds numbers, Re; =

6.7x10° and Re L= 1.7x10°%. Transition occurs at a Reynolds number of Re =4.9x10%, as evidenced by

the rise in heat transfer above computed laminar values. The relative stability of the leading edge is
demonstrated by comparing heat transfer here to heat transfer on the model centerline at the lowest

Reynolds number, shown in Fig. 7-5. Transition occurs here at Re, =0.5x10%. For comparison,

transition on a cold wall, sharp-nosed axisymmetric cone of 7 deg. half angle in AEDC Tunnel B% at Mach
8 is Re =2.7x10°%. Flowfield computations show a thick centerline boundary layer with strongly inflected
velocity profiles on the elliptic cone. As evidenced by the heat transfer measurements, this boundary layer
is highly unstable. Leading edge transition is typically more of a design consideration than leeside or
centerline transition due to the high heating here. However, since the centerline transition occurs so far
forward and covers such a large region of the model, its effects are not insignificant.

Fig 7-6, which illustrates roughness effects, shows heat transfer at x /L = 0.65 around a 90 deg. quadrant of
the model for Re, = 1.7x10° . Increased heat transfer occurs between 6 = 20 and 70 deg. when 2 mm and

1.3 mm diameter roughness is placed around the circumference of the model at x / L = 0.225. A weak
circumferential periodicity in the heat transfer near © = 45 deg on the smooth model amplifies with
increasing roughness. The crossflow wavelength here is expected to be approximately 13.7 mm, or
approximately 6.2 deg. of arc at 6 = 45 deg. and x / L = 0.65. Spacing on center for the 2 mm and 1.3 mm
diameter roughnesses was 7.9 mm (2.2 deg.) and 5.2 mm (1.8 deg.), respectively. The five heat transfer
gauges between @ = 38 deg. and 52 deg. are spaced at 3.5 deg intervals. Heat transfer from these
transducers shows a circumferential periodicity of about 7 deg. Although the circumferential transducer
spacing is near or slightly greater than the expected Nyquist wavenumber for crossflow instabilities, the fact
that the heat transfer pattern persists and amplifies with increasing roughness (regardless of the
circumferential spacing of the roughness) is strongly suggestive of a stationary crossflow vortex signature.
Also, Fig 7-6 shows that roughness placed along the leading edge has essentially no effect on heat transfer
at this station. Linear stability calculations indicate that stationary cross flow vortices will have their axes
aligned with the boundary layer edge streamlines. These results indicate that disturbances engendered by
the roughness elements propagated along the same directions as the crossflow vortices, rather than the
surface streamlines.

Heat transfer contours are shown in Fig. 7-7. These contours were constructed with data obtained at each of
the unit Reynolds numbers tested. The locations of the individual transducers in Re_, 6 coordinates used to

construct the contours are superimposed. Discontinuities in heat transfer at Re, = 10° and 4.8x10° are

artifacts due to interpolation between the grid of circumferentially arrayed transducers and transducers
located along rays of the model. The measured heat transfer was divided by the calculated laminar heat
transfer to obtain a ratio, h, which was near unity for laminar flow, and greater than unity for turbulent flow.
Since the computations underpredicted heat transfer somewhat, a threshold value of 7 = 1.5 was chosen to
indicate transition. A third order, least squares polynomial was fitted through the transition front obtained
in this fashion. This transition front coincides with the first departure of heat transfer values away from
their local minima. A unit Reynolds number effect was observed in the data, i.e., the transition Reynolds

number Re,_ varies with freestream unit Reynolds number. This variation was up to 20% at 8 = 45 deg.

Data presented in Re, , 6 coordinates suffer from a greatly exaggerated scale near the nose. The data of

Fig. 7-7 are presented in Fig 7-8 on the developed, or unwrapped, surface of the cone. It can be seen from
this figure that the high heat transfer on the leading edge and near the centerline are confined to relatively
small areas. Local peak heating due to transition near the shoulder is distributed over a wider area.




The transition front extracted from Fig. 7-7 is compared in Fig. 7-9 to computed cold wall Rep / M,
contours. As pointed out by Stetson”, Reg / M, is a less than desirable correlation parameter due to the
uncertainty in correlating Rey / M, values, which produces large uncertainty in transition location.
Nevertheless, it is still widely used due to its simplicity and the fact that it embodies at least rough transition
trends in Reynolds number and Mach. Comparison of the measured transition front to Reg / M, contours
shows that transition corresponds to Reg / M, of approxunately 100. As shown previously, this value of Reg
/ M, coincides approximately with the Reed and Haynes®’ correlating parameter of R = 33.7 on the adiabatic
wall elliptic cone.

Since transition occurs first at the model centerline, due to the unstable boundary layer here, it must be
questioned how much of the transition front around the circumference of the model is influenced by this
early centerline transition. Certainly, some circumferential spreading is to be expected. However, given the
centerline edge Mach number of approximately 6.8 and the fact that most of the flow is directed ax1a11y or
toward centerline, circumferential contamination should be minimal. Wind tunnel expenments on the
windward side of the Space Shuttle Orbiter indicate that transition due to roughness placed to one side of an
attachment line was contained to that side of the attachment line.

Hot Film Measurements

Spectra for six roll locations are plotted in Fig. 7-10. These stations show the most dramatic trends
in stability. For @ > 55 deg., the boundary layer shows only a low frequency component centered
at less than 20 kHz. For ® < 25 deg., the boundary layer spectrum appears turbulent, with a
build-up in amplitude to approximately 100 kHz, followed by a roll-off. The nature of the spectra
change markedly between 8 = 25 and 58 deg. The low frequency component disappears abruptly
between @ = 45 and 55 deg. Between 6 = 55 and 58 deg., a spectral component centered at
approximately 70-90 kHz appears. Between 6 = 45 and 55 deg., this component increases in
amplitude relative to the rest of the spectrum and shifts to lower frequencies. As 6 decreases, this
feature becomes less prominent relative to the rest of the spectrum, and is no longer evident at 6 =
25 deg. This non-dimensional frequency of this feature is approximately 0.5U,/3. It has been
shown previously’ that 0.5U/8 is the characteristic frequency of second mode disturbances in
axisymmetric boundary layers.

The nature of the lower frequency peak in the power spectrum is more difficult to determine. Low
frequency peaks measured in a crossflow may be due to traveling crossflow vortices. However,
low frequency peaks in the power spectrum have also been measured with hot wires on
axisymmetric cone boundary layers in AEDC VKF- B’ at freestream Mach 6 and 8, and in a NASA
Langley quiet tunnel’ at Mach 6. The shape of these low-frequency peaks appears similar to the
freestream acoustic disturbance spectrum.”  Measurements made in the axisymmetric cone
boundary layer in AEDC VKF-B, using the same hot film probes used in this test also showed a
low frequency peak. In contrast to the hot wire measurements, the hot film low-frequency peak
was much less pronounced compared to the rest of the spectrum. This difference between the two
sensors is most likely due to the over-compensation of high frequencies measured with the hot
films. The low frequency peaks measured on the elliptic cone appear more prominent than those
measured on the axisymmetric cone. Also, the prominence of the low frequency peak on the
elliptic cone depends on the circumferential location. Based on these observations, the low
frequency peaks may be associated with crossflow. Both the low and high frequency peaks show a
good degree of circumferential coherence (Fig. 7-11). -

These conclusions are further supported by comparing the measurements with linear stability
computations. Computed amplification rates for eight selected frequencies at Re = 1. 6x10° are
shown in Fig. 7-12. Only positive growth rates (negative o) are shown. High rates near the model
centerline for ® < 16 deg. are associated with the unstable, highly inflected mean velocity profiles
there, and give rise to the early centerline transition observed in the experiment. For 16 < 6 < 90
deg., two regions of high amplification are observed. One occurs near the model leading edge for
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72 < O < 84 deg., and appears to be associated with crossflow. Peak amplification occurs at
about 15 kHz. A second amplification peak occurs between approximately 20 and 80 deg. The
location of this peak varies with each frequency and depends on the local boundary layer thickness.

Computed N-factors for the same Reynolds number are plotted in Fig. 7-13. The N-factors were
computed by integrating o, for the most unstable wave angle along the group velocity vector for
each frequency. The group velocity vector was generally within 2 deg. of the edge streamlines,
which in turn were similar to rays emanating from the model apex. To a rough approximation, the
N-factors in Fig. 7-13 may be thought of as being integrated along rays from the apex. Integration
was not carried out when growth rates became negative (o, greater than 0). The plotted N-factors
will thus be larger than actual in regions where these frequencies have crossed the upper neutral
bound and begun to decay. The most-amplified frequencies over a large portion of the
circumference are 15-30 kHz. This is in general agreement with the experiment. Away from the
centerline, N-factors for traveling waves generally decrease monotonically with increasing
frequency. No dramatic peak appears in the N-factor curves as it does in the experiment, indicating
that the amplification of the higher frequencies may be underpredicted by linear theory.

For stations where the flow is laminar and unstable and distinct maxima can be identified in the
cross-spectra, the frequencies corresponding to these peaks are plotted in Fig.

Cross-spectra from the three hot-film probes (LAT, US, and DS) were used to estimate disturbance
wave angle.” Keeping in mind that the phase velocity (the speed of a constant-phase surface
normal to itself) does not obey the ordinary rules of vector addition, the following geometric
relationship holds for a quasi-planar wave intercepted by a pair of point probes lying in the x-y
plane:

c,7=¢&, siny+& cosy

The probe separations, fx and fy , are known for each pair of probes, and 7 is obtained from the
cross spectrum as demonstrated in Section 3. For any set of two pairs of probes a pair of
simultaneous equations may be solved to obtain ¢,and y/. With the two probe pairs labeled 1 and
2, the equation for the wave angle is

T2§yl - TléyZ ]

V= arctan[
Tl§x2 - T2§x1

and the phase speed is given by

cr = (éxl Sin l//+ gyl Cos l/’)/ 7"l

Conclusions

The earliest transition occurred on model centerline due to the highly inflected, unstable boundary layer
profiles here. The most downstream transition occurred on the leading edge. Traveling waves were evident
on both leading edge and centerline in schlieren photographs. The transition pattern was correlated roughly
with Reg / M, contours of 100. Signatures of stationary crossflow vortices in surface oil flow or heat
transfer were weak to nonexistent. This may be due to the attenuation of crossflow vortex eigenfunctions
near the wall, unsteadiness in crossflow vortices, or simply their weakness or nonexistence. Roughness




placed along the model leading edge had little effect on heat transfer, but circumferentially spaced
roughness caused increased, circumferentially periodic heating downstream. These results indicate that
disturbances from surface roughness propagated along streamlines external to the boundary layer, rather
than along surface streamlines. The circumferential variation in heat transfer thus appears to be due to
crossflow vortices.

The salient feature of transition on the elliptic cone is the early centerline transition, which appears to be
the result of traveling waves. Off-centerline transition appears to be affected by traveling waves also to
some extent. These results are reminiscent of those obtained” on a delta wing at Mach 3.5. Stationary
waves on this configuration were also weakly manifested except in the presence of roughness, and
traveling waves appeared to be dominant, based on comparison of transition results with linear stability
theory calculations. Two peaks were observed in the spectrum. The lower frequency peak appears
to be due to traveling crossflow instability. The higher frequency peak is probably due to second
mode instability. These observations are based on comparison of the experimental results to
computed linear stability characteristics. Linear stability theory appears to underpredict the second
mode amplification.

Two ramifications for transition prediction arise from this experiment. First, the demonstrated dominance
of traveling waves in crossflows highlights the accuracy with which they must be calculated for transition
prediction. Also, their relative influence compared to stationary waves must be accurately predicted.
Second, leeside flow or influx due to crossflow at symmetry planes must also be accurately predicted, both
in mean flow and stability analysis. Although heating rates here are generally lower than windward or
leading edge locations, these flows are highly unstable, and transition here can spread laterally. This lateral
contamination must also be calculated for three-dimensional transition fronts.
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Figure 7-1. Surface static pressures.

7-5




Figure 7-3. Surface oil flow visualization.
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Figure 7-4. Heat transfer on elliptic cone leading edge.
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Figure 7-5. Heat transfer on elliptic cone centerline.
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